Objects or Design First?

Authors (depends on contributions to writing this paper!)
Computer Science and Engineering Department

Lehigh University

Bethlehem, PA 18015 USA

glennblank@gmail.com, sgh2@lehigh.edu
Abstract

Pedagogies for teaching object-oriented programming in an introductory course are still under much debate. We present a design-first approach, which teaches problem-solving techniques using elements of use cases and UML. Objects are still introduced early in the curriculum. We also present tools supporting our approach: , the Eclipse IDE with a UML plug-in for class design that we are developing for novices and multimedia courseware to help students learn the basic concepts of objects and classes.
Introduction

Though object-oriented programming has been with us for more than a dozen years, there is still much debate on how and when to teach it. Kim Bruce (2004) reviews three basic approaches for instructors to try in a CS1 course: teach objects later, after students learn procedural constructs including loops and arrays; teach objects first, using pedagogical tools such as BlueJ, DrJava, or microworlds; or use a procedural or functional language for the first course and save object orientation for CS2.

A heuristic for curriculum development is: students learn best what they learn first. If that is true, and if object-oriented concepts, such as modularity and reuse, are more fundamental to modern software development than the syntactic details or even procedural decomposition, we chose to try an “objects-first” approach facilitated by the BlueJ environment (Kölling 2003). Our experimental results demonstrate that students can learn an “objects-first” approach to Java, especially with the help with multimedia-guided instruction and exercises (Blank 2003).

An objects-first approach does not, however, address another crucial aspect of software development—how to analyze a problem or design a solution. Object-oriented problem solving is a significant obstacle for CS1 students (Bailie 2003). BlueJ hints at object-oriented design by presenting beginners with a simple UML-like design with which they interact before writing any code. But BlueJ does not reveal where these designs come from or invite students to create their own. Like earlier syntax-oriented approaches, BlueJ still reinforces a misconception that software development is little more than coding. In an era of concerns about out-sourcing programming jobs, as well as ongoing difficulties attracting women and minorities into computer science, we believe it is a mistake to continue reinforcing this stereotype in the first course. Before coding, we believe students should get a glimpse of the big picture of software development, so that they can better appreciate its challenges and opportunities.

We therefore propose a “design first” approach in introductory courses, in which students learn object-oriented analysis and design as problem-solving skills. In our curriculum, students learn how to develop use cases to analyze problems, then design solutions using UML, before implementing any code in Java (Moritz 2005a). Interactive multimedia lessons introduce the curriculum (Blank 2005a). We have incorporated an initial version of our new curriculum in a CS1 course at Lehigh University as well as a Java programming course at a local inner-city high school, and the results are promising (Moritz 2005a).
We support our curriculum with two tools. The first is CIMEL (Blank 2003), multimedia courseware which presents object-oriented concepts through text, audio, graphics, and interactive exercises. The second is the Eclipse IDE for Java, augmented with two extensions: a DrJava plug-in which provides an interactive environment for demonstrating Java code (Allen 2002
) and a UML plug-which supports entry of class diagrams and generates Java code from class designs.

The next section describes our design-first curriculum in detail. The following two sections introduce the tools we are developing to support this curriculum. Section 4 discusses results using this curriculum at the high school level, and section 5 summarizes our future plans, including an intelligent tutoring system.
2. The Design-First Curriculum

The current curriculum consists of eight units covering: 1) software engineering, comparing the process of building a software system to building a house (requirements and architectural design); 2) the concepts of objects, classes, and instances; 3) use cases and UML class diagrams in the context of developing a movie ticket machine project; 4) identifying attributes and methods and designing a class; 5) syntax of expressions and statements, including assignment, if statements and character output; 6) designing a character-based input separately from the problem domain classes; 7) graphical user interfaces using Swing; and 8) applets.

The curriculum is project-based, i.e., new concepts are introduced in the context of a larger project in which they are immediately applied. Students work on projects analysis, design and Java programming in pairs, throughout the course. Each student is assigned a partner with whom he or she works for the semester. They alternate daily who types and who observes.
A detailed description of each unit follows:

Unit 1 introduces the idea of software engineering. Building a software system is compared to building a house. Students list the steps in building a house from a customer’s initial wishes through gathering requirements, looking at existing plans, creating a blueprint, and so on. Analogous steps in software development are discussed. Thus, our curriculum first emphasizes the process of solving a problem.
Next are objects. Unit 2 introduces students to objects as entities with attributes and behaviors, and to classes as descriptions of categories of objects. These lessons are supplemented by the CIMEL multimedia, and by several hands-on exercises in Eclipse. The exercises use an Eclipse project based on the Shapes classes delivered with BlueJ and referenced in Objects First with Java (Barnes 2002). Whereas BlueJ gives students a birds-eye view with a class diagram of the Shapes classes in an idiosyncratic notation, our setup immediately introduces students to a class diagram in UML. Interacting with this class diagram and DrJava, students create instances of Square and call methods to change their locations or colors, and see the results immediately. Students also examine the attributes of each Shape and learn about data types. A final exercise invites students to add their own code to an existing method and view the results.

Unit 3 teaches use cases and class diagrams in the context of developing a small application: a movie ticket machine (adapted from the idea of a train TicketMachine class in Objects First with Java). The instructor plays the role of a theater manager, whom the students interview to determine the system requirements. Working in pairs, they develop use cases, including a detailed description of the actions performed and the actors involved. They go on to design a Ticket Machine class, by entering the class, including attributes and method signatures, into the Eclipse UML interface. Students also develop a test plan to be executed after the code for each method is written. Thus our design-first curriculum borrows the idea of test-first development from Extreme Programming (XP).
In unit 4, students learn procedural language concepts, starting with variables, assignment and arithmetic operations, followed by character-based printing and if statements. They complete exercises that give them practice in each new concept, then immediately apply what they’ve learned in coding the Ticket Machine’s methods. They execute their test plans by creating a Ticket Machine instance and calling methods from DrJava’s Interactions Pane. Thus the syntactic details of Java have been deferred until after students have begun to learn about object-oriented software analysis and design. They learn just enough syntax to implement a solution to the problem they have been working on. Test their solution incrementally in DrJava encourages an appreciation for an iterative approach to software development
In unit 5, students learn how to build a character-based interface for the Ticket Machine. A class called “EasyReader” is provided to simplify reading character input. (We plan to replace EasyReader with the Scanner class when Eclipse supports JDK version 1.5.) Students also learn how to convert String data to integer or double data types using the parseInt and parseDouble methods from the Integer and Double classes. They code a simple interface that presents a menu of options to the user, and based on the user’s input, performs the requested function, such as displaying the movie title and price, accepting money for tickets, or printing tickets. The interface design is kept in a separate class from other classes, so that students learn the principle of separation of concerns—keep problem domain and human interaction separate, or loosely coupled. They will soon see this principle pay dividends when they learn how to create a graphical user interface.
Unit 6 introduces loops. Students apply while-loop logic to allow the user to enter a series of requests to the Ticket Machine. Students also learn about scope of variables and how the concept applies to a program with nested blocks, such as theirs. All students end the unit by completing a fully-tested character-based version of the Ticket Machine. BlueJ seems to avoid the creation of stand-alone applications altogether, but we think students need to understand how to create products that work independently of the development environment.
At this point, students are ready to create a similar project on their own, following the same steps they used to build the Ticket Machine. The high school students created a calculator (also with a character-based interface). Deliverables turned in and graded at each step of the process include a set of use cases, a UML class diagram, a fully coded and tested Calculator class, and a complete working program.

Unit 7 teaches students how to create a graphical interface using Swing. Students first learn how to display simple dialog boxes with JOptionPane. Next, they create a frame with simple graphical elements: text boxes, labels, and buttons. Through analyzing the code for a simple application, they learn about multi-threaded processes and how a listener works. They apply their knowledge in creating a graphical interface for their Calculator. The benefits of well-designed classes and separate of concerns are again stressed as students see how they can reuse the same Calculator problem domain class used in the character-based version for the graphical version of the program. They also learn how to add features to their calculator while learning how to use the Sun online Java documentation through an exercise that adds a square root function.

Finally, unit 8 introduces applets by stepping through the process of converting the graphical Calculator application to an applet.

The complete curriculum outline, with worksheets, the Eclipse/UML/DrJava IDE, and other supporting materials, are available at www.lehigh.edu/stem/teams/dieruff. Our approach does not refer to a textbook, because none exists, though we have written a initial draft of text following our approach (interested parties may contact the first author). The worksheets include explanations of concepts and practical examples. In the high school course, they were used in lieu of a textbook.

3. An Eclipse plug-in for Designing UML Classes

An integrated development environment that supports the aims of the curriculum is an important tool for successful learning. We needed these three capabilities in an IDE: 1. Inspection and entry of basic UML components (at minimum class diagrams). 2. Generation of basic code structures so students are shielded from some of the complexities of syntax. 3. Interactive capabilities, such as allowing entry and execution of a single line of code, to help students visualize what each statement does. Finally, many students would prefer to use a real world, practical IDE from the start, which they can continue using as they progress to more advanced courses and beyond academia. No one IDE we considered had all these features, but we were able put one together based on Eclipse.

Eclipse (www.eclipse.org) is an open-source development environment created and supported by a consortium of technology companies, including IBM, HP, and Oracle. It is freely available and widely used by professional developers in both industry and academia. Its capabilities can easily be extended through the creation of plug-ins, allowing us to add functionality by selecting from many existing plug-ins or by creating our own. We found an implementation of our first and second requirements in a UML plug-in, and our third requirement in a DrJava plug-in.

For UML, we first used Omondo UML (www.omondo.com), which provides a window in which to create and save class diagrams. [SALLY OR ME: EXPLAIN DRAWBACKS OF OMONDO, WHY WE DECIDED TO CREATE OUR UML PLUG-IN AND WHAT IT LET STUDENTS DO, REVISING THE FOLLOWING TEXT.]

Panels to add attributes and methods to a class allow entry of all essential elements of each: datatype for attributes and parameters and return value for methods. Options such as public, private or protected, and static are given default values so students don’t have to fully understand them at first, let alone remember to code them. Method panels also let developers enter method-specific body code as well as Javadoc-style comments. The interface is easy enough for a beginner to learn, and also offers features useful to experienced developers. Thus students are learning an environment they can continue to use in subsequent courses.

Students learn how to use the UML window before they are shown any code. The first exercise in Unit 1 introduces the Shapes classes via a class diagram. In the diagram, students can view the attributes and methods of a class, determine the parameters and return value of a method, and look at the documentation for each, all without reading a line of code. This allows students to concentrate on the concepts before learning the syntax of Java.

Every project assigned in the course enters Eclipse through the UML window. Because students develop use cases and a class diagram before writing any code, the class diagram is the first information they enter into Eclipse. From the class diagram, the code for the class header, attributes, and method stubs (including return value and parameters) is generated. Students may then enter the code for each method in Eclipse’s standard code window (opened automatically when the student double-clicks on a class in the UML diagram), or through the UML interface (in the Implementation tab for each method). Using the code window is preferred because compiler messages and help are not yet available in the UML interface.

DrJava is a popular standalone IDE for beginners. Its goals include providing a simple, easy to use environment which nevertheless scales up to handle larger programming projects typically assigned in advanced courses. It also allows for quick and easy testing of portions of code (Allen 2002). Its Interactions Pane, separate from the code window, allows students to enter code snippets that create instances or call methods, interactively. Thus, a student can quickly test a method she just wrote, view the contents of a variable at a given point in time, or simply see the results of creating an instance of a class. The Eclipse plug-in version of DrJava provides the Interactions Pane within Eclipse (REFERENCE TO SIGCSE 2004 PAPER)
4. Multimedia e-learning support

CIMEL (Constructive and collaborative, Inquiry-based Multimedia E-Learning) is courseware designed to supplement a CS0 or CS1 course. (Most of the multimedia complements The Universal Computer: Introducing Computer Science with Multimedia. See www.cse.lehigh.edu/~glennb/um for details.) A screen from the Objects and Classes chapter is shown in Figure 1. Documents and a demo are available at www.cse.lehigh.edu/~cimel.
Experimental results indicate that first year students can learn Java “objects-first” using BlueJ, especially with the help of interactive multimedia (Blank 2003). We have modified CIMEL’s chapter on Objects and Classes to introduce the Eclipse environment instead of BlueJ. The chapter uses real-world examples like car, house, and person to describe the basic concepts of object orientation. Attributes, methods, and primitive data types are also covered. Students are quizzed on these concepts through interactive exercises, with additional explanation or hints given when an incorrect response is entered. The multimedia then introduces the student to Eclipse and steps through some simple experiments using the Shapes classes. These exercises lead up to the student’s assignment to add functionality to an existing method.

[image: image1.png]2 http://128.180.123.1, - CIMEL - A Multimedia Introduction To Computer Science - short - Microsoft Internet Explorer

CHAPTERS A

Introducing the Univers;
Problem sohing
Programming language
Software Engineering
Peeling the onion: com;
Operating systems
Networks
User interface and weh
Social and ethical issuc
Algorithm analysis
Artificial intefligence
Objects and classes
Objects are natural
Eclipse programming
Introduction to Eclips
The Shapes project
Creating objects in &
Creating objects exe.
Classes and objects
Muttiple instances.

Obiects vs. classes:
v

Objects and classes : Creating objects in Eclipse.

DrJaya - shapes.ucd - - Eclipse Platform
Fle Edt View Navgate Search Project Run Windon Hep

Sl& -BF-*-& |8

J'c:c=-¢>-

T

B *shepes.ucd - X ‘

Q| BEEL R

N picture
& shapes

vielcome to DrJava,

Enter the java code to create a square
Square 51 = new Square); In this statement,
51 is the niame of an instance of class
Square.

8

[> Square 51 = new Square()|

PR X: 00000

@ Internet

Figure 1: Screen capture from CIMEL multimedia introducing the Eclipse environment

[DONNA: DESCRIBE MULTIMEDIA ON USE CASES HERE.]

5. Results [SALLY]
- First semester results at Dieruff; lessons learned
- Results so far second semester at Dieruff

5. Future Plans
- Tools (new and improvements): NOTE: These might better fit in section 3.
 SALLY: Plans for releasing our own version of the UML plugin
 DONNA: FUTURE MULTIMEDIA ON CLASS DESIGN IN UML HERE

 SALLY OR ME: SUMMARIZE ITS HERE?

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grants No. EIA-0087977 and 0231768 and PITA (Pennsylvania Infrastructure Technology Association).

References
…
�Should we refer to the SIGCSE 2004 paper describing the plugin? Somehow I didn’t notice this before…)

PAGE
2

