Exercises:

1. What output will be produced by the following code?

public class Demo {

 public static void main(String[] args) {

 System.out.println("The output is:");

 foo(23);

 System.out.println();

 }

 public static void foo(int number) {

 if (number > 0) {

 foo(number / 2);

 System.out.print(number % 2);

 }

 }

}

	Solution:

The output is:

10111

This code is in Demo1.java.

2. What output will be produced by the following code?

public class Demo {

 public static void main(String[] args) {

 System.out.println("The output is:");

 bar(11156);

 System.out.println();

 }

 public static void bar(int number) {

 if (number > 0) {

 int d = number % 10;

 boolean odd = (number / 10) % 2 == 1;

 bar(number / 10);

 if (odd)

 System.out.print(d / 2 + 5);

 else

 System.out.print(d / 2);

 }

 }

}

	Solution:

The output is:

05578

This code is in Demo2.java.

3. Write a recursive method that will compute the number of odd digits in a number.

	Solution:

 public static long countOdd(long number){

 long result;

 if(number == 0)

 // base case
 result = 0;

 else {

 long digit = number % 10;

 if(digit < 0)

 digit = -1 * digit;

 if(digit % 2 == 1)

 result = countOdd(number/10) + 1;

 else
 result = countOdd(number/10);

 }

 return result;

 }

This code is in Methods.java.

4. Write a recursive method that will compute the sum of the digits in a positive number.

	Solution:

 public static long sumDigits(long number){

 long result;

 if(number == 0)

 // base case
 result = 0;

 else {

 long digit = number % 10;

 if(digit < 0)

 digit = -1 * digit;

 result = digit + sumDigits(number/10);

 }

 return result;

 }

This code is in Methods.java.

5. Complete a recursive definition of the following method:

/**

Precondition: n >= 0.

Returns 10 to the power n.

*/

public static int computeTenToThe(int n)

Use the following facts about xn:

xn = (xn/2)2 when n is even and positive

xn = x (x(n - 1)/2)2 when n is odd and positive

x0 = 1

	Solution:

 /**

 * Precondition: n >= 0.

 * Returns 10 to the power n.

 */
 public static int tenToThe(int n){

 int result;

 if(n==0){

 result = 1;

 } else {

 result = tenToThe(n/2);

 result = result * result;

 if(n%2 == 1){

 // n is odd we need to square then multiply by 10
 result = result * 10;

 }

 }

 return result;

 }

This code is in Methods.java.

6. Write a recursive method that will compute the sum of all the values in an array.

	Solution:

 public static int sumArray(int [] data){

 return sumArray(data, data.length-1);

 }

 public static int sumArray(int [] data, int last){

 int result;

 if(last < 0)

 result = 0; // only one value in the subarray
 else{

 result = data[last] + sumArray(data, last-1);

 }

 return result;

 }

This code is in Methods.java.

7. Write a recursive method that will find and return the largest value in an array of integers. Hint: Split the array in half and recursively find the largest value in each half. Return the larger of those two values.

	Solution:

 public static int max(int [] data){

 return max(data, 0, data.length-1);

 }

 public static int max(int [] data, int first, int last){

 int result;

 if(first == last)

 result = data[first]; // only one value in the subarray
 else{

 int mid = (last + first)/2;

 int max1 = max(data, first, mid);

 int max2 = max(data, mid+1, last);

 if(max1 > max2)

 result = max1;

 else
 result = max2;

 }

 return result;

 }

This code is in Methods.java..

8. Write a recursive ternary search algorithm that splits the array into three parts instead of the two parts used by a binary search.

	Solution:

 public static int trinarySearch(int data[], int target){

 return trinarySearch(data, target, 0, data.length-1);

 }

 //Uses trinary search to search for target in a[first] through
 //a[last] inclusive. Returns the index of target if target
 //is found. Returns -1 if target is not found.
 public static int trinarySearch(int data[], int target,

 int first, int last) {

 int result;

 if (first > last)

 result = -1;

 else {

 int mid1 = (2*first + last)/3;

 int mid2 = (first + 2*last)/3;

 if (target == data[mid1])

 result = mid1;

 else if (target == data[mid2])

 result = mid2;

 else if (target < data[mid1])

 result = trinarySearch(data, target, first, mid1 - 1);

 else if (target < data[mid2])

 result = trinarySearch(data, target, mid1 + 1, mid2-1);

 else
 result = trinarySearch(data, target, mid2 + 1, last);

 }

 return result;

 }

This code is in Methods.java.

9. Write a recursive method that will compute cumulative sums in an array. To find the cumulative sums, add to each value in the array the sum of the values that precede it in the array. For example, if the values in the array are [2, 3, 1, 5, 6, 2, 7], the result will be [2, (2) + 3, (2 + 3) + 1, (2 + 3 + 1) + 5, (2 + 3 + 1 + 5) + 6, (2 + 3 + 1 + 5 + 6) + 2, (2 + 3 + 1 + 5 + 6 + 2) + 7] or [2, 5, 6, 11, 17, 19, 26]. Hint: The parenthesized sums in the previous example are the results of a recursive call.

	Solution:

 public static void cumulativeSum(int data[]){

 cumulativeSum(data, 1);

 }

 public static void cumulativeSum(int data[], int n) {

 if (n == data.length)

 return;

 else {

 data[n] += data[n-1];

 cumulativeSum(data, n+1);

 }

 }
This code is in Methods.java.

10. Suppose we want to compute the amount of money in a bank account with compound interest. If the amount of money in the account is m, the amount in the account at the end of the month will be 1.005m. Write a recursive method that will compute the amount of money in an account after t months with a starting amount of m.

	Solution:

 public static double compoundInterest(double start, int months){

 double result;

 if(months <= 0){

 result = start;

 } else {

 result = 1.005 * compoundInterest(start, months-1);

 }

 return result;

 }
This code is in Methods.java.

11. Suppose we have a satellite in orbit. To communicate to the satellite, we can send messages composed of two signals: dot and dash. Dot takes 2 microseconds to send, and dash takes 3 microseconds to send. Imagine that we want to know the number of different messages, M(k), that can be sent in k microseconds.

• If k is 0 or 1, we can send 1 message (the empty message).

• If k is 2 or 3, we can send 1 message (dot or dash, respectively).

• If k is larger than 3, we know that the message can start with either dot or dash. If the message starts with dot, the number of possible messages is M(k - 2). If the message starts with dash, the number of possible messages is M(k - 3). Therefore the number of messages that can be sent in k microseconds is M(k - 2) + M(k - 3).

Write a program that reads a value of k from the keyboard and displays the value of M(k), which is computed by a recursive method.

	Solution:

 public static int messages(int time){

 int result;

 if(time <= 3)

 result = 1;

 else
 result = messages(time - 2) + messages(time - 3);

 return result;

 }

This code is in Methods.java.

12. Write a recursive method that will count the number of vowels in a string. Hint: Each time you make a recursive call, use the String method substring to construct a new string consisting of the second through last characters. The final call will be when the string contains no characters.

	Solution:

 public static int countVowels(String s){

 int result;

 if(s.length() == 0)

 result = 0;

 else {

 if(isVowel(s.charAt(0)))

 result = 1 + countVowels(s.substring(1));

 else
 result = countVowels(s.substring(1));

 }

 return result;

 }

 public static boolean isVowel(char c){

 return c=='a' || c=='e' || c=='i' || c=='o' || c=='u'
 || c=='A' || c=='E' || c=='I' || c=='O' || c=='U';

 }

This code is in Methods.java.

13. Write a recursive method that will remove all the vowels from a given string and return what is left as a new string. Hint: Use the + operator to perform string concatenation to construct the string that is returned.

	Solution:

 public static String removeVowels(String s){

 String result;

 if(s.length() == 0)

 result = "";

 else {

 if(isVowel(s.charAt(0)))

 result = removeVowels(s.substring(1));

 else
 result = s.charAt(0) + removeVowels(s.substring(1));

 }

 return result;

 }

This code is in Methods.java.

14. Write a recursive method that will duplicate each character in a string and return the result as a new string. For example, if "book" is the argument, the result would be "bbooookk".

	Solution:

public static String doubleEachLetter(String s){

 String result;

 if(s.length() == 0)

 result = "";

 else {

 String doubled = "" + s.charAt(0) + s.charAt(0);

 result = doubled + doubleEachLetter(s.substring(1));

 }

 return result;

 }

This code is in Methods.java.

15. Write a recursive method that will reverse the order of the characters in a given string and return the result as a new string. For example, if "book" is the argument, the result would be "koob".

	Solution:

 public static String reverse(String s){

 String result;

 if(s.length() == 0)

 result = "";

 else {

 result = reverse(s.substring(1)) + s.charAt(0);

 }

 return result;

 }

This code is in Methods.java.

Projects:

1. Write a static recursive method that returns the number of digits in the integer passed to it as an argument of type int. Allow for both positive and negative arguments. For example, −120 has three digits. Do not count leading zeros. Embed the method in a program, and test it.

	Notes:

A technique similar to that in RecursionDemo2, Listing 11.4, can be used for this Project First change the number to positive if it is negative. The base case is when the number has just one digit, which returns 1 if the result of the truncated division of the number by 10 is zero. If non-zero, a recursive call is made to the method, but with the original number reduced by one digit, and (1 + the value returned by the recursive call) is returned. In this fashion, each recursive call will add 1, but not until the base case is executed. The base case returns a 1 and the stacked calls can now “unwind,” each call executing in turn and adding 1 to the total. The first call is the last to execute and, when it does, it returns the number of digits.

	References:

Listing 11.4

	Solution:

See the code in NumberOfDigitsDemo.java.

2. Write a static recursive method that returns the sum of the integers in the array of int values passed to it as a single argument. You can assume that every indexed variable of the array has a value. Embed the method in a test program.

	Notes:

The insight for this problem is to realize that the array passed each iteration must be diminished by one element and the base case is when the passed array has just one element. In order to pass a diminished array, another, temporary, array must be created that is a copy of all but the highest-index value of the passed array. The return value should be the sum of the value at the highest-index of the passed array plus the return value from the call to sumOfInts.

	Solution:

See the code in SumOfIntsDemo.java.

3. One of the most common examples of recursion is an algorithm to calculate the factorial of an integer. The notation n! is used for the factorial of the integer n and is defined as follows:

0! is equal to 1

1! is equal to 1

2! is equal to 2 _ 1 = 2

3! is equal to 3 _ 2 _ 1 = 6

4! is equal to 4 _ 3 _ 2 _ 1 = 24

. . .

n! is equal to n _ (n − 1) _ (n − 2) _ ... _ 3 _ 2 _ 1

An alternative way to describe the calculation of n! is the recursive formula

n * (n − 1)!, plus a base case of 0!, which is 1. Write a static method that implements this recursive formula for factorials. Place the method in a test program that allows the user to enter values for n until signalling an end to execution.

	Notes:

This problem is very easy to write as a recursive algorithm. The base case returns one for n = 0 or n = 1. All other cases multiply the number passed by the return value of a recursive call for the passed number minus one. Note that the program loops until the user enters a non-negative number. One word of caution: it is easy to enter a number that will result in a calculated value too large to store. An interesting little project would be to have the students find out what the largest integer value is for the platform they are using, then determine which values to enter to bracket the maximum value, and run the program to see what happens when the those values are entered.

	Solution:

See the code in Factorial.java.

4. A common example of a recursive formula is one to compute the sum of the first n integers, 1 + 2 + 3 + … + n. The recursive formula can be expressed as 1+2+3+…+n=n+(1+2+3+…+(n – 1))
Write a static method that implements this recursive formula to compute the sum of the first n integers. Place the method in a test program that allows the user to enter the values of n until signaling an end to execution. Your method definition should not use a loop to add the first n integers.

	Notes:

This Project is also very easy to write as a recursive algorithm. The base case returns one and any other case adds the number passed to it to the number returned by a recursive call with the number passed to it reduced by one. Note that the program loops until the user enters a positive integer since the progression is defined only for positive integers.

	Solution:

See the code in ArithmeticProgression.java.

5. A palindrome is a string that reads the same forward and backward, such as "radar". Write a static recursive method that has one parameter of type String and returns true if the argument is a palindrome and false otherwise. Disregard spaces and punctuation marks in the string, and consider upper- and lowercase versions of the same letter to be equal. For example, the following strings should be considered palindromes by your method:

"Straw? No, too stupid a fad, I put soot on warts."

"xyzcZYx?"

Your method need not check that the string is a correct English phrase or word. Embed the method in a program, and test it.

	Notes:

The algorithm for this Project is a bit tricky. The recursive algorithm leads to some inefficiency. For example, the problem statement asks for a method that takes a string with spaces and punctuation, but only looks at the letters and returns a Boolean value. So the method must parse the input string and eliminate everything but letters. Although the string needs to be parsed just once, a recursive algorithm must be identical each iteration, so the parsing occurs each iteration. The base case either returns TRUE if the string has zero or one characters, or, if the string has two or more characters, it checks the first and last characters and has a more complex algorithm to determine whether to return TRUE or FALSE. If the two letters (the first and last) are different it returns FALSE. But it the two are the same, it returns the result of a recursive call with a smaller string, with the first and last letters removed. So each iteration reduces the string by a pair of letters until the string is down to zero or one character (even or odd number of letters, respectively, in the original string). The base case returns TRUE and starts unraveling the stacked method calls. The base method always returns TRUE, but each return after that ANDs it with the Boolean result of the test for a pair of letters that must be the same if it is a palindrome. If any pair is not equal, a FALSE is ANDed and, by definition of the AND operation, the result will be FALSE. The method, after all iterations are done, will return TRUE only if every iteration returned TRUE (the letters in each pair were the same).

An alternative approach would be to write a second recursive method that looks at each character in the string recursively and appends it to the result if it is not space or punctuation.

	Solution:

See the code in PalindromeTestDemo.java.

6. A geometric progression is defined as the product of the first n integers, and is denoted as

geometric(n) = <formula omitted>
where this notation means to multiply the integers from 1 to n. A harmonic progression is defined as the product of the inverses of the first n integers, and is denoted as

harmonic(n) = <formula omitted>
Both types of progression have an equivalent recursive definition:

geometric(n) = <formula omitted>
harmonic(n) = <formula omitted>
Write static methods that implement these recursive formulas to compute geometric(n) and harmonic(n). Do not forget to include a base case, which is not given in these formulas, but which you must determine. Place the methods in a test program that allows the user to compute both geometric(n) and harmonic(n) for an input integer n. Your program should allow the user to enter another value for n and repeat the calculation until signaling an end to the program. Neither of your methods should use a loop to multiply n numbers.
	Notes:

This is another easy program to write as a recursive algorithm. One little detail is to avoid integer division truncation when calculating the harmonic progression by casting the numerator (1) in the division to double. Also note that it is easy to enter a value that will cause either an overflow for the geometric progression calculation or underflow for the harmonic progression calculation. Students should be made aware of these common pitfalls, especially because the system does not flag them as errors.

	Solution:

See the code in GeometricAndHarmonicProgressions.java.

7. The Fibonacci sequence occurs frequently in nature as the growth rate for certain idealized animal populations. The sequence begins with 0 and 1, and each successive Fibonacci number is the sum of the two previous Fibonacci numbers. Hence, the first ten Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, and 34. The third number in the series is 0 + 1, which is 1; the fourth number is 1 + 1, which is 2; the fifth number is 1 + 2, which is 3; and so on.

Besides describing population growth, the sequence can be used to define the form of a spiral. In addition, the ratios of successive Fibonacci numbers in the sequence approach a constant, approximately 1.618, called the “golden mean.” Humans find this ratio so aesthetically pleasing that it is often used to select the length and width ratios of rooms and postcards.

Use a recursive formula to define a static method to compute the nth Fibonacci number, given n as an argument. Your method should not use a loop to compute all the Fibonacci numbers up to the desired one, but should be a simple recursive method. Place this static recursive method in a program that demonstrates how the ratio of Fibonacci numbers converges. Your program will ask the user to specify how many Fibonacci numbers it should calculate. It will then display the Fibonacci numbers, one per line. After the first two lines, it will also display the ratio of the current and previous Fibonacci numbers on each line. (The initial ratios do not make sense.) The output should look something like the following if the user enters

5:

Fibonacci #1 = 0

Fibonacci #2 = 1

Fibonacci #3 = 1; 1/1 = 1

Fibonacci #4 = 2; 2/1 = 2

Fibonacci #5 = 3; 3/2 = 1.5
	Notes:

The recursive algorithm for Fibonacci numbers is a little more involved than the series calculations in the previous Projects. Base cases for 0, 1 or two numbers simply return a value, and all other numbers make two recursive calls to get the previous two Fibonacci numbers to add together to obtain the current number. The method to calculate a Fibonacci number is recursive, but the code to print the output is not; it uses a for-loop to cycle through the Fibonacci numbers and ratios.

	Solution:

See the code in Fibonacci.java.

8. Imagine a candy bar that has k places where it can be cut. You would like to know how many different sequences of cuts are possible to divide the bar into pieces. For example, if k is 3, you could cut the bar at location 1, then location 2, and finally at location 3. We indicate this sequence of cuts by 123. So if k is 3, we have six ways to divide the bar: 123, 132, 213, 231, 312, or 321. Notice that we have k possibilities for making the first cut. Once we make the first cut we have k - 1 places where a cut must be made. Recursively, this can be expressed as

C(k) = k C(k - 1)

Lets make this a bit more interesting by adding a restriction. You must always cut the leftmost pieces that can be cut. Now if k is 3, we can cut the bar at locations 123, 132, 213, 312, or 321. A cutting sequence of 231 would not be allowed, because after the cut at 2 we would have to make the cut at location 1, since it is the leftmost piece. We still have k possibilities for making the first cut, but now we have to count the number of ways to cut two pieces and multiply. Recursively, this can be expressed as

<formulas omitted>
Develop a program that will read a value of k from the keyboard and then display C(k) and D(k). (D(k) is interesting because it turns out to be the number of ways that we can parenthesize an arithmetic expression that has k binary operators.)

	Notes:

The recursive algorithm for C(k) is easy to implement and should be familiar. The recursive algorithm for D(k) is slightly more complicated, but can be based on C(k). Instead of making a single recursive call, loop and make the recursive calls. As with previous projects, this one can experience overflow if the input value k is too large.

	Solution:

See the code in Cuts.java.

9. Once upon a time in a kingdom far away, the king hoarded food and the people starved. His adviser recommended that the food stores be used to help the people, but the king refused. One day a small group of rebels attempted to kill the king, but were stopped by the adviser. As a reward, the adviser was granted a gift by the king. The adviser asked for a few grains of wheat from the king’s stores to be distributed to the people. The number of grains were to be determined by placing them on a chessboard. On the first square of the chessboard, he placed one grain of wheat. He then placed two grains on the second square, four grains on the third square, eight grains on the fourth square, and so forth.

Compute the total number of grains of wheat that were placed on k squares by writing a recursive method getTotalGrains(k, grains). Each time getTotalGrains is called, it “places” grains on a single square; grains is the number of grains of wheat to place on that square. If k is 1, return grains. Otherwise, make a recursive call, where k is reduced by 1 and grains is doubled. The recursive call computes the total number of grains placed in the remaining k - 1 squares. To find the total number of grains for all k squares, add the result of the recursive call to grains and return that sum.

	Notes:

This demonstrates a recursion where a partial solution is being built up on the way down the recursion. What makes this interesting is that it is not just a tail recursion (the partial solution becomes the complete solution at the bottom of the recursive chain), but that it computes an answer using each of the partial solutions.

	Solution:

See the code in Grain.java.

10. There are n people in a room, where n is an integer greater than or equal to 2. Each person shakes hands once with every other person. What is the total number of handshakes in the room? Write a recursive method to solve this problem with the following header:

public static int handshake(int n)

where handshake(n) returns the total number of handshakes for n people in the room. To get you started, if there are only one or two people in the room, then:

handshake(1) = 0

handshake(2) = 1

	Notes:

This is a short and relatively straightforward recursive problem.

	Solution:

See the code in Handshake.java.

11. Given the definition of a 2D array such as the following:

String[][] data = {

 {"A","B"},

 {"1","2"},

 {"XX","YY","ZZ"}

};

Write a recursive Java program that outputs all combinations of each subarray in order. In the above example the desired output (although it doesn’t have to be in this order) is:

A 1 XX

A 1 YY

A 1 ZZ

A 2 XX

A 2 YY

A 2 ZZ

B 1 XX

B 1 YY

B 1 ZZ

B 2 XX

B 2 YY

B 2 ZZ

Your program should work with arbitrarily sized arrays in either dimension. For example, the following data:

String[][] data = {

 {"A"},

 {"1"},

 {"2"},

 {"XX","YY"}

};
Should output:

A 1 2 XX

A 1 2 YY
	Notes:

This is a more complex recursive problem than the others in this chapter and has many possible solutions. The solution given here recursively fill in a oneline[] array that represents one entry of the product of sets. The array is filled in by iterating through each subarray for each recursive call. That is, the first recursive call iterates through the elements in data[0], the second recursive call iterates through the elements in data[1], etc.

	Solution:

See the code in ArrayProduct.java.

12. Create an application in a JFrame GUI that will draw a fractal curve using line segments. Fractals are recursively defined curves. The curve you will draw is based on a line segment between points p1 and p2: To draw the curve from p1 to p2, you first split the segment into thirds. Then add

two segments and offset the middle segment to form part of a square, as shown in the following picture:

Note that you would not draw the arrowheads, but we use them here to indicate the direction of drawing. If the order of p1 and p2 were reversed, the square would be below the original line segment. This process is recursive and is applied to each of the five new line segments, resulting in the following curve: The fractal is given by repeating this recursive process an infinite number of times. Of course, we will not want to do that and will stop the process after a certain number of times.

To draw this curve, use a recursive method drawFractal(p1x, p1y, p2x, p2y, k). If k is zero, just draw a line from p1 to p2. Otherwise, split the line segment into five segments, as described previously, and recursively call drawFractal for each of these five segments. Use k - 1 for the last argument in the recursive calls.

For convenience, you may assume that the segments are either vertical or horizontal. The initial call should be drawFractal(50, 800, 779, 800, 5). Set the size of the window to 1000 by 1000.

	Notes:

The hardest part of this recursive algorithm is getting arguments of recursive calls for each segment correct. Part of the complication is that Java’s coordinate system has y positive in the downward direction. One can work on the horizontal case first and then do the vertical. It is recommended that k=1 be used when developing the algorithm as well.

	Solution:

See the code in Fractal.java.

