Exercises:

1. Write a program that demonstrates the approximate nature of floating-point values by performing the following tasks:

• Use Scanner to read a floating-point value x.

• Compute 1.0 / x and store the result in y.

• Display x, y, and the product of x and y.

• Subtract 1 from the product of x and y and display the result.

Try your program with values of x that range from 2e-11 to 2e11. What can you conclude?

	Solution:

See the code in Approximation.java. You cannot count on mathematical identities to always be true. For example, x times 1/x may not be equal to 1. You should avoid testing for equality with floating point numbers.

2. Write a program that demonstrates type casting of double values by performing the following tasks:

• Use Scanner to read a floating-point value x.

• Type cast x to an int value and store the result in y.

• Display x and y clearly labeled.

• Type cast x to a byte value and store the result in z.

• Display x and z clearly labeled.

Try your program with positive and negative values of x that range in magnitude from 2e-11 to 2e11. What can you conclude?

	Solution:

See the code in TypeCaster.java. As long as the value is not too large, then the type cast acts like truncation. If the value is large enough, however, the result of the type cast is unpredictable.

3. Write a program that demonstrates the operator % by performing the following tasks:

• Use Scanner to read a floating-point value x.

• Compute x % 2.0 and store the result in y.

• Display x and y clearly labeled.

• Type cast x to an int value and store the result in z.

• Display x, z, and z % 2 clearly labeled.

Try your program with positive and negative values of x. What implications do your results have for deciding whether a negative integer is odd?
	Solution:

See the code in ModTester.java. If we compute the mod of a positive number, the result is either zero or negative. If we compute the mod of a negative number, the result is either zero or positive. Mathematically, when we mod an integer by 2, we should get 1. But, because of the way mod works with positive and negative values, we can not just check to see if the value of the mod is 1.

4. If u = 2, v = 3, w = 5, x = 7, and y = 11, what is the value of each of the following expressions, assuming int variables?

• u + v * w + x

• u + y % v * w + x

• u++ / v + u++ * w

	Solution:

u + v * w + x

is 2 + 3 * 5 + 7

is 2 + 15 + 7

is 24

u + y % v * w + x

is 2 + 11 % 3 * 5 + 7

is 2 + 2 * 5 + 7

is 2 + 10 + 7

is 19

u++ / v + u++ * w

is 2 / 3 + 3 * 5

is 2 / 3 + 3 * 5

is 0 + 15

is 15

This code is in Fragments.java.

5. What changes to the ChangeMaker program in Listing 2.3 are necessary if it also accepts coins for one dollar and half a dollar?

	Solution:

Add variables.

int dollars, halfDollars;

Change the prompt.

System.out.println("Enter a whole number greater than 0.");

Compute dollars and halfDollars before the quarters computation.

 dollars = amount / 100;

 amount = amount % 100;

 halfDollars = amount / 50;

 amount = amount % 50;

Add to the output.

System.out.println(dollars + " dollars");

System.out.println(halfDollars + " halfDollars");

6. If the int variable x contains 10, what will the following Java statements display?

System.out.println("Test 1" + x * 3 * 2.0);

System.out.println("Test 2" + x * 3 + 2.0);

Given these results, explain why the following Java statement will not compile:

System.out.println("Test 3" + x * 3 - 2.0)
	Solution:

The first statement prints:

 Test 160.0

The second statement prints:

Test 2302.0

In the first print statement, we compute 60.0, convert that into a string and concatenate it with “Test 1”.

In the second statement, we compute 30 and convert that into a string and concatenate to “Test 2”. Then we convert 2.0 to a string and concatenate. Notice that the plus operator is concatenation here not addition and the result is a string.

The third print statement does not compile, because Java can not apply the minus operator to a string and 2.0.

This code is in Fragments.java.

7. Write some Java statements that use the String methods indexOf and substring to find the first word in a string. We define word to be a string of characters that does not include whitespace. For example, the first word of the string " Hello, my good friend!" is the string "Hello," and the second word is the string "my".

	Solution:

sentence = sentence.trim();

int space = sentence.indexOf(" ");

String word = sentence.substring(0, space);

System.out.println("The first word is: " + word);

This code is in Fragments.java.

8. Repeat the previous exercise, but find the second word in the string.

	Solution:

sentence = sentence.trim();

int space = sentence.indexOf(" ");

String rest = sentence.substring(space).trim();

space = rest.indexOf(" ");

String secondWord = rest.substring(0, space);

System.out.println("The second word is: "

+ secondWord);

This code is in Fragments.java.

9. What does the following Java statement display?

System.out.println("\"\tTest\\\\\rIt\'");

Does replacing the r with an n make a difference in what is displayed?
	Solution:

The results depend on the environment being used. NetBeans displayed:

"
Test\\

It'
BlueJ displayed:

"
Test\\It'
The change made a difference in BlueJ, but not in NetBeans.

This code is in Fragments.java.

10. Write a single Java statement that will display the words one, two, and three, each on its own line.

	Solution:

System.out.println("one\ntwo\nthree");

This code is in Fragments.java.

11. What does the Java code

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter a string.");

int n = keyboard.nextInt();

String s = keyboard.next();

System.out.println("n is " + n);

System.out.println("s is " + s);

display when the keyboard input is 2istheinput?
	Solution:

Exception in thread "main" java.util.InputMismatchException

This code is in Fragments.java.

12. What does the Java code

Scanner keyboard = new Scanner(System.in);

keyboard.useDelimiter(“y”);

System.out.println("Enter a string.");

String a = keyboard.next();

String b = keyboard.next();

System.out.println("a is " + a);

System.out.println("b is " + b);

display when the keyboard input is

By the

pricking

of my thumbs
	Solution:

a is B

b is the

pricking

of m

This code is in Fragments.java.

13. Repeat the previous exercise, but change next to nextLine in the statement that assigns a value to b.
	Solution:

a is b

b is y the

This code is in Fragments.java.

14. Many sports have constants embedded in their rules. For example, baseball has 9 innings, 3 outs per inning, 3 strikes in an out, and 4 balls per walk. We might encode the constants for a program involving baseball as follows:

public static final int INNINGS = 9;

public static final int OUTS_PER_INNING = 3;

public static final int STRIKES_PER_OUT = 3;

public static final int BALLS_PER_WALK = 4;

For each of the following popular sports, give Java named constants that could be used in a program involving that sport:

• Basketball

• American football

• Soccer

• Cricket

• Bowling

	Solution:

These are just some of the possible constants we could define.

 // Basketball

 public static final int QUARTERS = 4;

 public static final int POINTS_PER_REGULAR_SHOT = 2;

 public static final int FOULS_PER_GAME = 5;

 // American football

 public static final int MINUTES_PER_QUARTER = 15;

 public static final int DOWNS = 4;

 public static final int YARDS_TO_FIRST_DOWN = 9;

 public static final int POINTS_FOR_TD = 6;

 public static final int POINTS_FOR_FIELDGOAL = 3;

 // Soccer

 public static final int PLAYERS_PER_SIDE = 11;

 public static final int MINUTES_PER_HALF = 45;

 public static final int BREAK_TIME = 15;

 // Cricket

 public static final int PLAYERS_PER_TEAM = 11;

 public static final int PITCH_LENGTH = 66;

 public static final int PITCH_WIDTH = 10;

 // Bowling

 public static final int NUMBER_OF_PINS = 10;

 public static final int FRAMES = 10;

 public static final int PERFECT_GAME = 300;

This code is in Fragments.java.

15. Repeat Exercise 18 in Chapter 1, but define and use named constants.
	Solution:

public static final int RING_DIAMETER = 40;

 public static final int RING_X_OFFSET = 25;

 public static final int RING_Y_OFFSET = 25;

 public void paint(Graphics canvas) {

 canvas.drawOval(0, 0, RING_DIAMETER, RING_DIAMETER);

 canvas.drawOval(2*RING_X_OFFSET, 0, RING_DIAMETER,

RING_DIAMETER);

 canvas.drawOval(4*RING_X_OFFSET, 0, RING_DIAMETER,

RING_DIAMETER);

 canvas.drawOval(RING_X_OFFSET, RING_Y_OFFSET, RING_DIAMETER,

RING_DIAMETER);

 canvas.drawOval(3*RING_X_OFFSET, RING_Y_OFFSET, RING_DIAMETER,

RING_DIAMETER);

}

This code is in Rings.java.

16. Define named constants that you could use in Programming Project 8 in Chapter 1.
	Solution:

public static final int X_CENTER = 120;

 public static final int Y_CENTER = 120;

 public static final int FILL_DIAMETER = 20;

 public static final int CLEAR_DIAMETER = 40;

 public void paint(Graphics canvas) {

 canvas.drawOval(X_CENTER - CLEAR_DIAMETER/2,

Y_CENTER - CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER);

 canvas.fillOval(X_CENTER - FILL_DIAMETER/2,

Y_CENTER - FILL_DIAMETER/2,

FILL_DIAMETER, FILL_DIAMETER);

 canvas.drawArc(X_CENTER - CLEAR_DIAMETER/2,

Y_CENTER + CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 0, 180);

 canvas.drawArc(X_CENTER - CLEAR_DIAMETER/2,

Y_CENTER - 3*CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 0, -180);

 canvas.drawArc(X_CENTER - 3*CLEAR_DIAMETER/2,

Y_CENTER - CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 90, -180);

 canvas.drawArc(X_CENTER + CLEAR_DIAMETER/2,

Y_CENTER - CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 90, 180);

 }

Projects:

1. Write a program that reads three whole numbers and displays the average of the three numbers.

	Notes:

This project requires careful use of integer and double data types to avoid unwanted truncation when dividing.

	Solution:

See the code in Average3.java.

3. Write a program that reads the amount of a monthly mortgage payment and the amount still owed—the outstanding balance—and then displays the amount of the payment that goes to interest and the amount that goes to principal (i.e., the amount that goes to reducing the debt). Assume that the annual interest rate is 7.49 percent. Use a named constant for the interest rate. Note that payments are made monthly, so the interest is only one twelfth of the annual interest of 7.49 percent.

	Notes:

Two solutions are given for this project. Since the round method in Java is not discussed in this chapter, the first solution, Mortgage.java, takes a simplistic approach in which the payment and principle amounts are entered as whole numbers and the interest calculation truncates, rather than rounds. An alternative approach would be to explain to students how to round numbers by doing the calculation in floating point, adding 0.5, then truncating (by explicitly casting the result to int). In addition, you may want to explain a technique for working with money: convert each money value to an integer number of cents. Enter money amounts as a decimal value with two decimal places, multiply by 100, and add 0.5, then truncate by explicitly casting to int. Using the resulting integer values for all the money transactions avoids errors in the cents that could occur through truncation or encoding the money in floating point format. Mortgage2.java, uses this technique.

	Solution:

See the code in Mortgage.java. This program only allows whole dollar input amounts and truncates rather than round the interest calculations.

See the code in Mortgage2.java. This program allows dollar.cents input values. Interest calculations are rounded.

4. Write a program that reads a four-digit integer, such as 1998, and then displays it, one digit per line, like so:

1

9

9

8

Your prompt should tell the user to enter a four-digit integer. You can then assume that the user follows directions. Hint: Use the division and remainder operators.

	Notes:

This project is straightforward since it assumes the user enters correct data.

	Solution:

See the code in Vertical4Digits.java.

6. Write a program that converts degrees from Fahrenheit to Celsius, using the formula DegreesC = 5 (DegreesF − 32) / 9. Prompt the user to enter a temperature in degrees Fahrenheit as a whole number without a fractional part. Then have the program display the equivalent Celsius temperature, including the fractional part to at least one decimal point. A possible

dialogue with the user might be

Enter a temperature in degrees Fahrenheit: 72

72 degrees Fahrenheit is 22.2 degrees Celsius.

	Notes:

This project specifically asks for the Fahrenheit temperature to be an integer so the Fahrenheit variable is declared as an int and the formula has only integer constants. The calculated Celsius value, however, is supposed to include the fractional part, so it must be a floating-point value and a cast to float is used in the calculation to avoid truncation due to integer division.

	Solution:

See the code in FtoC.java.

7. Write a program that reads a line of text and then displays the line, but with the first occurrence of hate changed to love. For example, a possible sample dialogue might be

Enter a line of text.

I hate you.

I have rephrased that line to read:

I love you.

You can assume that the word hate occurs in the input. If the word hate occurs more than once in the line, your program will replace only its first occurrence.

	Notes:

This project gives the student practice using string methods and the backslash character as an escape character to print double quotes.

	Solution:

See the code in LoveHate.java.

8. Write a program that will read a line of text as input and then display the line with the first word moved to the end of the line. For example, a possible sample interaction with the user might be

Enter a line of text. No punctuation please.

Java is the language

I have rephrased that line to read:

Is the language Java

Assume that there is no space before the first word and that the end of the first word is indicated by a blank, not by a comma or other punctuation. Note that the new first word must begin with a capital letter.

	Notes:

This project is more practice using string methods, including sub-string indexing.

	Solution:

See the code in FirstToLastWord.java.

9. Write a program that asks the user to enter a favorite color, a favorite food, a favorite animal, and the first name of a friend or relative. The program should then print the following two lines, with the user’s input replacing the items in italics: I had a dream that Name ate a Color Animal

and said it tasted like Food!

For example, if the user entered blue for the color, hamburger for the food, dog for the animal, and Jake for the person’s name, the output would be

I had a dream that Jake ate a blue dog and said it tasted like hamburger!

Don’t forget to put the exclamation mark at the end.

	Notes:

This project requires careful attention to spaces in output messages. In particular, a space must be explicitly printed between the variables color and animal.

	Solution:

See the code in SillySentence.java.

10. Write a program that determines the change to be dispensed from a vending machine. An item in the machine can cost between 25 cents and a dollar, in 5-cent increments (25, 30, 35, . . ., 90, 95, or 100), and the machine accepts only a single dollar bill to pay for the item. For example, a possible dialogue with the user might be

Enter price of item

(from 25 cents to a dollar, in 5-cent increments): 45

You bought an item for 45 cents and gave me a dollar,

so your change is

2 quarters,

0 dimes, and

1 nickel.● Programming Projects

	Notes:

This project is a good example to use for explaining code reuse by the simple process of copying a similar program and making modifications to it.

	Solution:

See the code in VendingChange.java.

11. Write a program that reads a four-bit binary number from the keyboard as a string and then converts it into decimal. For example, if the input is 1100, the output should be 12. Hint: Break the string into substrings and then convert each substring to a value for a single bit. If the bits are b0, b1, b2, and b3, the decimal equivalent is .
	Notes:

This project gives an opportunity to discuss binary numbers in a simple context. It requires the use of String manipulation and parseInt to convert each character into an integer that can then be used in formula.

	Solution:

See the code in FromBinary.java.

12. Many private water wells produce only 1 or 2 gallons of water per minute. One way to avoid running out of water with these low-yield wells is to use a holding tank. A family of 4 will use about 250 gallons of water per day. However, there is a “natural” water holding tank in the casing (i.e. the hole) of the well itself. The deeper the well, the more water that will be stored that can be pumped out for household use. But how much water will be available?
Write a program that allows the user to input the radius of the well casing in inches (a typical well will have a 3 inch radius) and the depth of the well in feet (assume water will fill this entire depth, although in practice that will not be true since the static water level will generally be 50 feet or more below the ground surface). The program should output the number of gallons stored in the well casing. For your reference:
The volume of a cylinder is [image: image2.png]nrih

 where r is the radius and h is the height.

1 cubic foot = 7.48 gallons of water.

For example, a 300 foot well full of water with a radius of 3 inches for the casing holds about 441 gallons of water -- plenty for a family of 4 and no need to install a separate holding tank.

	Notes:

This project gives the student practice with numerical calculations and simple input/output. Introduces problem solving with relatively straightforward conversion of units. Students are likely to encounter data type conversion issues from double to int and vice versa (e.g. radius / 12 will result in 0 if radius is an int).

	Solution:

See the code in WaterWell.java.

13. The Harris-Benedict equation estimates the number of calories your body needs to maintain your weight if you do no exercise. This is called your basal metabolic rate or BMR.
The calories needed for a woman to maintain her weight is:

BMR = 655 + (4.3 * weight in pounds) + (4.7 * height in inches) - (4.7 * age in years)
The calories needed for a man to maintain his weight is:

BMR = 66 + (6.3 * weight in pounds) + (12.9 * height in inches) - (6.8 * age in years)
A typical chocolate bar will contain around 230 calories. Write a program that allows the user to input their weight in pounds, height in inches, and age in years. The program should then output the number of chocolate bars that should be consumed to maintain one’s weight for both a woman and a man of the input weight, height, and age.
	Notes:

This project gives the student practice with numerical calculations and simple input/output. For a slightly more challenging problem allow the height to be entered in feet and inches and have the program convert to inches.

	Solution:

See the code in CandyCalculator.java.

15. Write a program that reads a string for a date in the format month / day / year and displays it in the format day . month . year, which is a typical format used in Europe. For example, if the input is 06/17/08, the output should be 17.06.08. Your program should use JOptionPane for input and output.

	Notes:

This project is a simple applet that gives the students more practice with String manipulation.

	Solution:

See the code in DateDisplayer.java.

