Online Store Application

Modelling and Simulation

David A. Shotton

University of the West of England

Abstract

This paper demonstrates the second phase in the design of an online shopping application. In extending the development of phase (1), additional functionality is provided to enable the user to order items on line and review the status of items purchased through use of a shopping basket. The requirement is for a standalone application to be executed using Netbeans IDE.

Introduction and Approach
An introduction to the modelling and simulation of a standalone online shopping cart is provided in (Sec.1.0). The Scope and requirements of the system are defined with Use Case scenarios (Sec.2.0) and the architectural design is modelled using Class Diagrams (Sec.3.0).

The structure and dynamic behaviour of the system is discussed through use of a Sequence Diagram (Sec.4.0). Source code for the Shopping Cart is explained and the ‘User Instructions’ for the complied version of the code to simulate the Shopping Basket is explained (Sec.5.0).

For testing the code, a discussion of the verification and validation approach is provided (Sec.6.0). A Discussion relating to the design of the online system concludes (Sec.7.0).

1.1 Modelling and Simulation Approach

The initial assignment introduced the object oriented approach and IDE environment for modelling the features an online shopping system. An important aspect of the initial modelling approach is that it provides a solution which can be extended for phase (2/3).

The second phase will extend the design and modelling of an online-store and simulate the basic functionality required to enter order details and progress the status of a shopping basket online. The functionality required to register and maintain the basket is not included.

2.0 Scope and Requirements

2.1 Purpose of the System

The basic functionality presented in the model of an online shopping application enables the User to search for items online, browse a list of products available, select item and add to product shopping basket, view the contents of the basket and check out an order online.

2.2 Requirements and Deliverables

The requirements of phase (1) were to design an architecture which would allow the Customer to browse and order items via an online shopping basket. It is a requirement of phase (2) to simulate the functionality of a simple shopping basket and extend the design.
User requirements and high level designs are delivered through the following artefacts;

· Use Cases and textural descriptions (phase 1)

· Use Case Diagram (phase 3)

· Sequence Diagram and Control Flow

· Class Diagram for Online Shopping System

· Executable source code (phase 1)

· Run time instructions for model simulation
2.3 Use Case Scenarios
In the phase (1) model, the use case enabled the customer to raise an online order for a range of items including Books, CD’s and Laptops. The Use Cases were extended to include scenarios for processing and order and shipping to customer and consisted of three distinct areas of development involving Shopping, Ordering and Customer Shipment / Details.

The Use Case main Flow (Fig 1.1) involves the following scenarios;

· The system asks the user to register and login to initiate ordering

· The user browses the online line shopping system using a catalogue

· The system requests that item is selected and is subsequently added to the cart

· The system enables the user view the contents of the shopping cart

· The user confirms selection and checks out the contents of the basket
[image: image1.emf]
Fig 1.1 Use Cases – Phase (1)
2.4 Phase 2.0 Requirements

The use cases and the class attributes are summarised in table 1.1 and table 1.2 respectively (See Appendix 1.0). A detailed class structure diagram (Appendix 2.1) identifies the key attributes for browsing and ordering items online which from the basis of phase (2).

3.0 Architectural Design

The initial class structure diagram has been extended and includes 13 classes which define the design for he online shopping system. The high level architecture and collaborative data flows are visually represented below (Fig 1.2). The segments relating to Online Ordering, involving the Shopping Cart and Item Ordering classes, from the basis of a detailed analysis in phase (2)

[image: image2.emf]
Fig 1.2 Collaboration Diagram

The functionality required to satisfy phase (2) and (3) extends to include segments for the customer online registration and shopping basket. An executable version of the code to demonstrate the functionality of the shopping basket at run-time is provided (Appendix 3.0).
3.1 Relationship between Classes

The class diagram presented for phase (1) (Appendix 2) summarises the relationships between the classes and their associations. These are defined as either direct or indirect binary associations and Aggregation defines the level of integration between classes and subclasses.
A Composite Aggregation is used to define a dependent relationship between component and aggregate. Class associations were discussed in element (1) in relation to inheritance.

4.0 Methods and Associated Operations
The application includes an Array and a Loop function which allows the user to shop online repeatedly for multiple purchases. At run time the program processes each item selected by proceeding through the loop function which reads in the name, price and quantity. The items selected are in turn added to the shopping basket. The items and the total price are quantified.
4.1 Package Structure
The package structure design used in Java programming identifies closely related classes representing a single function. Grouping these classes together will help to reduce aggregation and/or composition which improves class coupling.

Breaking the phase (1) model down into packages for ‘Customers’, ‘Book Shop’ and ‘Online Ordering’ (Fig 1.2 above) helped to define and group closely related classes representing a single function thereby limiting aggregation and/or composition and improving coupling.

4.2 Java Import Declarations

The java import statement is used to reference classes used in other packages and those chosen from the standard java class libraries. This may be a single member of the nested package, or if not known, the contents of the total package represented by a wild card (*;).

The Java installation includes predefined class packages the most commonly used are: applets java.applet, language extensions java.lang, utilities java.util, formatters java.text, file streams java.io, GUIs java.awt and javax.swing,

The java.lang is frequently called and therefore loaded automatically. The import statements used in this exercise are import java.util.scanner; which enables text to be enter via the keyboard, and import java.text.NumberFormat; which converts a floating point value (X) to a string of given size (w) with a specified number (n) of decimals.
4.3 Sequence Diagram and Control Flow
The Sequence diagram used here was generated from the NetBeans IDE having first created a Dependency diagram for the Shopping Cart and Item Classes (Appendix 2.2).
The Shopping Cart class is used to model the dynamic behaviour and control flow of the online systems through use of a Sequence Diagram (Appendix 2.3) The Shopping Cart is responsible for adding and removing items that a customer plans to buy.
A more elaborate model would illustrate when An item is added, AddItem() as an operation that adds merchandise to the cart and a Remove Item() is an operation that removes an item and indicate how a message is created and destroyed as part of the control flow.

5.0 User Instructions – Distribution and Executable

5.1 Format of Source Code

The simple online shopping application involves the use of standard input and output, double data type, if statements and simple arithmetic comparison on double, if statements, String Concatenation and String comparisons (Appendix 3.0).
In order to make the application suitable to generate output to screen using the Netbean IDE, it was necessary to incorporate multiple instances of the scanner class on ‘system.in’, used for input and ‘system.out’ in association with println() to output text messages to the screen.

5.2 Non-executables associated with the Shopping Cart.Java Package

The Java files associated with the Online Shopping application are stored in the package for online-store and include files for the Shopping Class, Item Class and the Shopping Cart Class.

The ‘Item.java’ and the ‘ShopingCart.java’ files are compiled and deugged however they are not designed to be in an executable format for output through the IDE, these were included for the production the Dependency diagram and Sequence Diagram.

5.3 Manifest File Distribution

The application has been packaged as an executable Jar File which means that any libraries specified in the application, in addition to the JDK, are copied into dist/lib. The manifest file is updated to include entries that designate main class and any libraries that are on the project's class path.

The manifest for the OnlineStore file is show as;

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0

Created-By: 10.0-b23 (Sun Microsystems Inc.)

Main-Class: onlinestore.Main

Class-Path:

X-COMMENT: Main-Class will be added automatically by build

5.4 Instructions for Running Java Programme
Select the ‘ShoppingCart.java’ file from the ‘OnlineStore Package’ and re-compile the file using the drop-down menu. Ensure the file is selected and Run from the drop down menu.

Note that using F9 and F6 may incur problems. The application will now display in the IDE’s output window and the following message will appear; “please enter item name”.

5.5 System Response to User Commands

Directions for using the simplified Online Shopping simulation. A compiled version of the code in the form of a .java file is provided. Enter characters in response to the following commands;

· Please enter item name;

· Please enter price;

· Please enter quantity;

The system prints out to screen a response to each of the above commands and returns the total price for the shopping basket. It’s a relatively uncomplicated solution and would need to be supported by a catalogue in order to make the item selection, however this solution provides evidence for the use of Arrays and Loops in demonstrating the basic Cart function.

5.6 Expected Application Response
The expected Text output to screen given the input

· Enter item name:

· Enter cost for each item:

· Enter quantity:

· Do you wish to add more items? (y/n): y

· Basket Total Price: £
Note that the Netbeans IDE commands as displayed in the compiler dialog box at the bottom of the screen.

6.0 Verification and Validation
6.1 Test Plans
As part of the test verification process it is necessary to write test cases for all functions and methods to be able to trace changes due to regression throughout the code. All methods relating to individual classes are listed and parameters assigned, including those to test exceptions. Valid and invalid criteria are normally set to validate the results.

The purpose of the unit tests for the Shopping Cart involves checking the functionality of the main methods which involves adding items to Cart and returning totals for quantity and price.

In the example used, the following parameters and associated input values were determined to generate testing criteria for a test plan, see table 1.1 below;

Table 1.1 Test Plan

	Test ID
	Parameter
	Expected
	Input value
	Output
	Result

	1.1
	Enter Item
	Menu displayed
	Text
	Item Name
	

	1.2
	Enter Price
	Menu displayed
	Number
	Value
	

	1.3
	Enter Quantity
	Menu Displayed
	Number
	Quantity
	

	1.4
	Continue
	Request ?
	Y/N
	Proceeds
	

	1.5
	Total
	Cart Totals
	None
	Sum
	

	
	
	
	
	
	

6.2 Detailed Unit Tests

The IDE provides a unit testing framework (JUnit 3/4) to facilitate the production of JUnit test classes for Vectors.java and Utils.java. This exercise uses the JUnit3 to test Vectors.

The IDE has been used to auto-generate the unit test cases and are stored in the compressed zip file supplied. The method body of each of the generated tests provides a default framework.

6.3 Common Errors and Exceptions
A Syntax error caused by omitting a semicolon (;) at the end of a statement will return;

testing.java:14: `;' expected.

System.out.println("Input has " + count + " chars.")

A semantic error generates a warning when a variable has not been initialized and returns;

testing.java:13: Variable count may not have been initialized.

count++

testing.java:14: Variable count may not have been initialized.

System.out.println("Input has " + count + " chars.");

In each case, the program will not successfully compile and the compiler will not create a .class file unless the error is resolved.
In the following example a runtime error is generated where Java cannot find the byte code file, HelloWorldApp.class.
Exception in thread "main" java.lang.NoClassDefFoundError: HelloWorldApp
This error can be rectified by assigning the .clas file to the current directory.

A Java programme needs to have a main method associated with the class and/o package to initiate the application else the following exception is generated;
Exception in thread "main" java.lang.NoSuchMethodError: main
6.4 Testing Class Structure and Associations

The class structure and associations for the online store were validated using the reverse engineering function of Netbeans IDE (Appendix 2.1). Although the classes were selected alphabetically to autogenerate the Class Diagram, the logical structure, dataflow and framework of nested packages used to model the Class Diagram were preserved.
7.0 Discussion and Conclusions

This case study has demonstrated how model driven development can provide a visual based analysis and simulation of the problem domain to assist in the analysis of associated business requirements and process definition. Requirements, Class Structure and Data flow have been modelled using Use Cases, Class Structure and Sequence Diagrams.

Through the design and development of an Online Store it has been possible to demonstrates the principles of inheritance and polymorphism through the use of abstract classes and arrays. Using this approach it has been possible to demonstrate the potential to improve the coupling of classes through analysis of the static and dynamic behaviour of the design.

It’s clear from this exercise that modelling the static relationship of class structure without referring to the dynamic relationships of data flow can prove problematic and the modelling approach has therefore benefited from the introduction of a Sequence Diagram.

This exercise has shown how a class structure is considered to be highly cohesive if it is dedicated to performing a single operation. This approach to class structure improves the resilience of the design, enables a design to be extended and reduces the need for regression testing where changes to code were required to satisfy the addition of phase (2) and (3).
References

David A. Shotton (2008) Using NetBeans IDE to Generate a Model Driven Architecture

UWE Assignment. OOP UFCEPM Element (1).

Barnes, David J (2006). Objects first with Java : a practical introduction using BlueJ.
Maciaszek, Leszek A. Requirements analysis and system design : developing information systems with UML.
Martin Fowler (1999). UML Distilled: A Brief Guide to the Standard Object Modelling Language, Addison Wesley
Unified Modelling Language ver 2.0, OMG, (2006), http://www.uml.org

Reed, Paul, Addison Wesley (2001). Developing applications with java and UML
Appendix (1)
Table 1.1 Online Book Store – Phase (1)

	Actor
	Description
	Action

	User
	Enter ID and password
	Logon

	User
	Browse keyword search
	Browse

	User
	Select title
	Makes Selection

	User
	Confirm order and payment method.
	Confirm Order

	User
	Log off
	Logoff

	System
	Repeat until done
	Displays Customer Order

	System
	Display welcome message and request customer ID and password.
	Request Logon Details

	System
	Validate the ID and password.
	Check ID

	System
	Display information about the title.
	Display Description of Item

	System
	Add title to the customer's shopping cart
	Add Request to Shopping Chart

	System
	Display shopping cart, shipping address, and billing address
	Display Customer Address

	System
	Processes order and despatch
	Process Order

Table 1.2 Class Attributes

	BookShop

· logon

· LogOff
	Staff

· UpdateRecords

· AmendItems
	
	

	Item,

· Title,

· Publisher

· ISBN

· Price
	Book

· Author

· Edition
	Journal

· Name
	CD

· Artist

	ItemOrder

· Item

· Quantity

	ShoppingCart

· AddItem

· Display

· Save
	OnlineOrder

· Customer

· PaymentMethod

	

	Customer

· Name

· ID

· Password

· ShippingAddress

· EmailAddress
	Address

· HouseNumber

· PostCode
	TermAddress
	HomeAddress

Appendix (2)
[image: image3.emf]
Appendix 2.1 Detailed Class Structure – Phase 1)
Appendix 2.2 Dependency Diagram - Shopping Cart

[image: image4.emf]
Appendix 2.3 Sequence Diagram – Shopping Cart

[image: image5.emf]
Appendix (3.1)

Java File – Shopping Class
package onlinestore;

mport java.util.Scanner;

/**

 *

 * @author David

 */

public class Shopping
{

 public static void main(String[] args)

 {

 String name[] = new String[1000];

 double[] price = new double[1000];

 int[] quantity = new int[1000];

 // you have to initialize it for the while loop to go

 String cont = new String("y");

 Scanner scan = new Scanner(System.in);

 int count = 0;

 while (!cont.equalsIgnoreCase("n"))

 {

 System.out.println("Please enter item name: ");

 name[count] = scan.next();

 System.out.println("\nPlease enter price: ");

 price[count] = scan.nextDouble();

 System.out.println("\nPlease enter quantity: ");

 quantity[count] = scan.nextInt();

 System.out.println("\nYour cart: " + "\nItem: " + name[count] + " " + "£" + price[count] + " " + "number of items: " + quantity[count]);

 count++;

 System.out.println("\nContinue shopping?(y/n)");

 cont = scan.next();

 }

 }

}

Appendix (3.2)

Java File – Item Class
package onlinestore;

import java.text.NumberFormat;

/**

 *

 * @author David

 */

public class Item

{
 private String name;

 private double price;

 private int quantity;

 // Create a new item with the given attributes.

 // ---

 public Item (String itemName, double itemPrice, int numPurchased)

 {

 name = itemName;

 price = itemPrice;

 quantity = numPurchased;

 }

 // Return a string with the information about the item

 public String toString ()

 {

 NumberFormat fmt = NumberFormat.getCurrencyInstance();

 return (name + "\t" + fmt.format(price) + "\t" + quantity + "\t"

 + fmt.format(price*quantity));

 }

 // Returns the unit price of the item

 // ---

 public double getPrice()

 {

 return price;

 }

 // Returns the name of the item

 // ---

 public String getName()

 {

 return name;

 }

 // Returns the quantity of the item

 // ---

 public int getQuantity()

 {

 return quantity;

 }

}

Appendix (3.1)

Java File – Shopping Cart Class

package onlinestore;

import java.text.NumberFormat;

/**

 *

 * @author David

 */

public class ShoppingCart
{

private int itemCount; // total number of items in the cart

 private double totalPrice; // total price of items in the cart

 private int capacity; // current cart capacity

 private Item[] cart;

 // Creates an empty shopping cart with a capacity of 5 items

public ShoppingCart()

 {

 capacity = 5;

 itemCount = 0;

 totalPrice = 0.0;

 cart = new Item[capacity];

 }

 // Adds an item to the shopping cart.

 public void addToCart(String itemName, double price, int quantity)

 {

 if (itemCount == cart.length)

 increaseSize();

 cart[itemCount] = new Item (itemName, price, quantity);

 totalPrice += price*quantity;

 itemCount++;

 }

 // Returns the contents of the cart together with

 // summary information.

 public String toString()

 {

 NumberFormat fmt = NumberFormat.getCurrencyInstance();

 String contents = "\nShopping Cart\n";

 contents += "\nItem\t\tUnit Price\tQuantity\tTotal\n";

 for (int i = 0; i < itemCount; i++)

 contents += cart[i].toString() + "\n";

 contents += "\nTotal Price: " + fmt.format(totalPrice);

 contents += "\n";

 return contents;

 }

 // Increases the capacity of the shopping cart by 3

 private void increaseSize()

 {

 Item[] temp = new Item[cart.length +3];

 for (int crt = 0; crt<cart.length; crt++)

 temp[crt] = cart[crt];

 cart = temp;

 }

}

04/12/2008 David Shotton UWE Assignment (2) OOP
 Student 96012370

