Laboratory 3 - Program Correctness and Efficiency

Introduction

Assuring program correctness is one of the major problems of Software Engineering. Chapter 2 discusses several approaches to this including program testing and proving program correctness. While we are not able to mathematically demonstrate correctness of production programs, we are able to demonstrate correctness of isolated algorithms which do not interact with parallel phenomenae such as input/output operations. Despite our inability to mathematically prove program correctness, researchers in this area have created a number of very useful techniques, tools, and ways of looking at program fragments which help us develop reliable softare.

Essentially, we use the formalism developed by the correctness proof movement to specify correct operation of our software components and systems.

Please understand that this kind of analysis requires that our algorithms terminate and typically yield a result. Not all useful software components meet these requirements. and we have already encountered an example of this in the Life Game project. However, many of the components in the Life Game project, such as the neighbors method, are are still algorithms which do terminate and yield a result.

One of these techniques is formally specifiying what are known as preconditions and post conditions for discrete algorithms. The preconditions govern the system state required for the alogirthm to run correctly and describes what parameters or other resources are made available to the algorithm. The postconditions describe in what ways the algorithm is allowed to modify system status, and will always describe allowed side-effects and return values.

We then use these formal specifications to design our test procedures.

There are several important approaches to software testing. Black-Box testing and White Box testing are both inheritted from general engineering practice. White-Box tests are designed based on knowledge of the internal design and function of what is being tested. Black-Box tests are designed based strictly upon external descriptions of functionality and performance without any knowledge of internal construction. Generally speaking, systems undergo both types of testing before they are publicly released. Public Beta's are one well known example of Black-Box testing.

Software Quality Assurance Engineers have also devised tools and techniques which may be unique to Software Engineering. One of these is introducing a known number of random errors into a program. The modified system is then sent to testing. The test-team then attempts to detect and isolate errors. The percentage of artificial errors detected and isolated is then used to estimate the number of actual design errors which have not yet been detect. This laboratory exercies is restricted to White-Box testing.

Getting Started

Create a new directory for the files of this exercise, and in it, save copies of the files Trig.java.

Software Testing

Complete writing the Trig class of static trigonometric functions that computes the sine, cosine, and tangent functions in a specialized manner. This class is going to be part of an embedded system running on a processor that does not support floating-point arithmetic or the Java Math class. This class computes the sine, cosine, and tangent of an angle expressed in degrees. The result will be an integer representing the sine or cosine as ten-thousandths. For example, a result of 7071 represents 7071e-4 or 0.7071. The class to be tested is included in Trig.java. Since this is an embedded applicaiton, the sine values for a single quadrant are stored as static data inside the method. In a genuine embedded application, these values would either be stored in a special table in ROM (Read Only Memory) or approximated in real-time by a polynomial. You will simulate a ROM-based table by reading the values from a file into an array when the program starts. For this assignment you will:

· Compute the table of precomputed sine values for angles between 0 and 90 degrees.

· Complete and test the static methods sin, cos, and tan.

· Design and implement a white-box test program for your Trig class.

· Design a set of test data that will exercise each of the if statements. To do this, look at the boundary conditions and pick values that are:

· Exactly at the boundary.

· Close to the boundary.

· Between boundaries.

And, compare the values produced by your Trig function to those produced by the StrictMath Java package.

Completing the Software Testing Problem

The goal for this assignment is to construct a functional Trig class with static methods sin, cos, and tan along with a test program called Tester which demonstrates the correctness of the three trigonometric methods. Recall that tan(θ) = sin(θ) / cos(θ) and that Tan(90) and Tan(270) can result in a DivideByZeroException. However, throwing this exception might make our methods more difficult to use and the value Double.NaN (not a number) is not available, so we will define and throw our own NoSuchNumberException. You will need to throw this exception not only when you attempt to divide by zero, also when your division operation would generate a numeric overflow. An overflow will occur when the result of your division would exceed the maximum magnitude for your integer values. Your test method and procedures need to test for properly throwing this exception. You also need to normalize your divisions as your sine and cosine methods will be returning integers in the range [-10000 , +10000] instead of [-1 , +1]. Similarly, your tangent operation will need to return values such that 1 is represented by 10000.

Efficiency and Optimization

When to Optimize

	"Premature optimization is the root of all evil." -Donald Knuth.

You should consider optimizing your program only after you have a working version and only if that version is too slow. Do not optimize as you go. If your program does not operate correctly, it does not matter how fast it runs. Do not mistake optimization for debugging; in fact, optimized programs are usually harder to understand and to debug because they break abstraction barriers in the name of efficiency. If you do decide to optimize, it is helpful to comment optimizations in your code and to keep the original, unoptimized version in source control somewhere. However, over time you will find yourself writing more efficient code initially. Often beginners include much unnecessary complexity in their programs. Generally, cleaner code will be both more reliable and more efficient than messy code.

Finally, you should always run tests before and after you optimize. Run your normal test suite (for correctness) to make sure you didn't introduce any new bugs. Don't become too attached to an algorithm or assume that a program will always run faster with fewer lines of code. Run performance tests (described in this lab) to objectively measure if your optimizations actually resulted in a net speed or size improvement.

Object Creation and Reuse

Creating an object in Java is an expensive operation, roughly equivalent to a malloc operation in C, or a new operation in C++, and takes anywhere from a couple hundred to a couple thousand VM ticks to complete, depending on the size of the object. Although modern VMs have very effective garbage collection algorithms, even small objects can remain on the heap long after their last use. Creating a large number of objects not only wastes memory but reduces the effectiveness of your computer's cache in speeding up memory accesses.

However, if your program currently works and you want to optimize it, you should consider moving code which creates objects outside of loops, as well as replacing small objects with calls to primitive data types.

One way of avoiding the penalty of object creation and garbage collection is to reuse objects instead of creating new ones. This usually involves making immutable objects mutable. For example, in the body of a loop it might be convenient to create an object, use it, and then discard it. This strategy is really wasteful. A better approach is to add methods to the object's class which allow you to reset the object's internal representation. Hence, you create one object which is then modified at the beginning of each iteration of the loop. However, mutable objects are susceptible to more bugs than immutable objects. How do you know an object is in a valid state? What if your program modifies a mutable object in one method while you are still using it in another? This is a classic tradeoff between efficiency and maintainability.

Code Profiling

Profiling is the collection of timing and memory usage information from an executing program. There are several ways to profile programs written in Java, including the Sun VM's built-in profiler and other, more sophisticated tools, both free and commercial. However, the quickest and easiest way to profile your Java program is to manually insert the following system calls into your code where they are needed:

· System.currentTimeMillis() returns the current time.

· Runtime.freeMemory() returns the amount of free memory in the current VM.

For example, to measure the time it takes to complete a big loop, you would augment your code as follows:

long start_time = System.currentTimeMillis();

for (int i = 0; i < somethingBig; i++) {

 // get some work done

}
long end_time = System.currentTimeMillis();
Computing the difference of end_time and start_time yields the amount of time it took to complete the loop. Note that System.currentTimeMillis() returns absolute system time, not process time, so you must be careful not to load the machine with other processes while profiling. Also, many computers (including most personal computers) do not have system clocks accurate to 1/1000 second. To obtain accurate results it may be necessary to run a given block of code N times, and take the average of the results. Similarly, you can use the statement Runtime.getRuntime().freeMemory() to measure memory usage. Since it is impossible to predict when the Java interpreter will invoke the garbage collector, it is wise to do this yourself to avoid erroneous results. For example:

System.gc() // Force the system to garbage collect

long start_memory = Runtime.getRuntime().freeMemory();

for (int i = 0; i < somethingBig; i++) {

 // get something done

}

long end_memory = Runtime.getRuntime().freeMemory();
The difference of end_memory and start_memory is the amount of memory used by the loop.

Software Complexity Problem

Write a Java program called Complexity which contains the following static methods:

	public static void unit(int n);
	This method will print 1 star and count the number of executions. The total number of executions will be printed when the program terminates.

	public static void linear(int n);
	This method will print n stars and count the number of executions. The total number of executions will be printed when the program terminates.

	public static void quadratic(int n);
	This method will print n2 stars and count the number of executions. The total number of executions will be printed when the program terminates.

	public static void cubic(int n);
	This method will print n3 stars and count the number of executions. The total number of executions will be printed when the program terminates.

	public static void exponential2(int n);
	This method will print 2n stars and count the number of executions. The total number of executions will be printed when the program terminates.

	public static void exponential3(int n);
	This method will print 3n stars and count the number of executions. The total number of executions will be printed when the program terminates.

	public static void factorial(int n);
	This method will print n! stars and count the number of executions. The total number of executions will be printed when the program terminates.

Note. Your program will request a value of n from the user, call each of the methods with the same value n, finally print a table displaying the execution count for each of the methods.

Note. You need to assure the number of executions algorithmically, not by calculating the value of O(f(n)) and using it to drive a simple loop.

Note. Do not enter values for n which are too big, or the sun will go nova long before the program finishes executing.

Note. The methods given above are only prototypes. You will need to write real methods.

Phrases you should now understand:

Program Correctness, Precondition, Postcondition, White-Box Testing, Black-Box Testing, Efficiency, Profiling.

	Collaboration
	You will complete this project individually.

	Implementation
	You must implement your system as a Java application. You may use Jgrasp. Do not use netbeans or produce a Java applet.

	Environment
	Your program must execute on the podium computer in our classroom.

	Turn in
	You must turn in both a report containing complete program sources and an executable electronic version of your program.

