

 SEQ CHAPTER \h \r 1Lesson 1: Introduction to Programming
Computer Systems
A computer system consists of all the components (hardware and software) used to execute the desires of the computer user. Hardware is the electronic physical components that can retrieve, process and store data. It is generally broken down into five basic components:

Central Processing Unit (C.P.U.)
This is the unit where programs are executed.

It consists of the control unit, which oversees the overall operation of program execution and the A.L.U. (Arithmetic/Logic Unit), which performs the mathematical and comparison operations.

Main Memory

where programs and data are stored for use by the CPU

Secondary Storage---- where programs and data are filed (stored) for use at a later time.

Input Devices---------- devices used to get programs and data into the computer (keyboard)

Output Devices-------
devices used to get programs and data from the computer (printer)

Programming
Computers in this twenty-first century will be guided by new and innovative programs that will radically change every aspect of our lives. Medical diagnostics, legal research, business applications, weapons development and even sermon preparations are but a few areas that will be dramatically altered as software and the hardware where they run become more sophisticated.

A computer program is a set of instructions that tell computers what to do. Software is the general term given to these instructions. Programming is the term given to the process of developing software.

Computer Languages

Computer languages, like human languages, are guided by a precise set of grammatical rules that must be strictly adhered. There are various levels of computer languages. Ultimately all programs are translated into a series of ones and zeros for this is the only format that a computer understands. Despite all their sophistication, a computer basically goes to a location and determines one of two condition (a one or zero). Primitive programming was done as a series of ones and zeros and was labeled machine language. Machine code was very difficult to develop and understand. The sophisticated programs that we know today would not be possible had it not been for the development of high-level languages. These languages are geared more for human understanding and logical development. High-level programming languages allow the use of vocabulary that is common to human communication thus making the task of programming easier. Although easier, these programs must be translated into the machine code described above. A compiler or interpreter are programs that make those translations.

Types of computer errors
Compilers and interpreters also detect and indicate grammatical errors whenever the language is used incorrectly. It is thus very important to learn the vocabulary and syntax rules for a particular language. The complete translation will not take place as long as there are grammatical errors. Once the program is free of such errors the translation will take place and give us an executable code ready to run.

Once we have the executable code, the program is ready to be run. Hopefully it will run correctly and everything will be fine; however that is not always the case. During “run time”, we may encounter a second kind of error called a run time error. This error occurs when we ask the computer to do something it cannot do. Look at the following sentence:

You are required to swim from Naples, Italy to New York in five minutes.

Although this statement is grammatically correct, it is asking someone to do the impossible. Just as we cannot break the laws of nature, the computer cannot violate the laws of mathematics and other binding restrictions. Asking the computer to divide by 0 would be an example of a run time error. We would get executable code; however, when the program tries to execute the command to divide by 0, the program will stop with a run time error. Run time errors are usually more challenging to find than syntax errors.

Once we run our program and get neither syntax nor run time errors, are we free to rejoice? Not exactly. Unfortunately, it is now that we may encounter the worst type of error: the dreaded Logic error. Whenever we ask the computer to do something, but mean for it to do something else, we have a logic error. Just as there needs to be a “meeting of the minds” between two people for meaningful communication to take place, there must be precise and clear instructions that generate our intentions to the computer. The computer only does what we ask it to do. It does not read our minds or our intentions! If we ask someone to cut down the tree when we really meant for them to trim the bush, we have a communication problem. They will do what we ask, but what we asked and what we wanted are two different things. The same is true for the computer. Asking it to multiply by 3 when we want something doubled is an example of a logic error. Logic errors are the most difficult to find and correct because there are no error messages to help us locate the problem. A great deal of programming time is spent on solving logic errors.

Procedural Programming

There are two basic approaches to writing computer programs.

Procedural programming allows the use of memory locations in the computer to be reserved for variables: storage locations containing values that can be altered during the course of the program. Such a memory location is given a name that reflects the nature of the data stored there. For example, hourlyRate may be the name of a location that holds the amount of pay a person is paid per hour. Values will also have operations performed on them. The variable hourlyRate and numOfHours may have the multiplication operation performed on them to create a new value, totalPay. This could be accomplished in a language such as Java by the following statement:

 totalPay = hourlyRate * numOfHours;

Operations can be grouped together into logical units called procedures. The instructions to input an hourly rate and number of hours worked and to calculate the total pay could be placed in one procedure. Another procedure could determine the Federal withholding tax. Call or invokes are used to activate these procedures. Although Java is not a procedural language, it uses these concepts that will be explored later. The following is a simple code that demonstrates these concepts. The code is not a true language code but rather pseudo (artificial) code. It consists of three procedures(methods): Main, FindPay, FindFedTax. The whole purpose of Main is to call the other two procedures. FindPay is a procedure(method) that inputs the values of pay rate & hours worked and then calculates and displays the total pay. FindFedTax determines the federal tax based on a 30% tax rate. Both FindPay and FindFedTax either return or need the value of totalPay. This is the reason that totalPay is placed in parenthesis in the call and title of those procedures. TotalPay is an argument of the methods (procedures) . These concepts are dwelt with at greater length in a later lesson.

Example:

Main program

 FindPay(totalPay);

 FindFedTax(totalPay);

FindPay(totalPay)

 Read(hourlyRate);

// This reads hourly Rate into hourlyRate variable location

 Read(numOfHours); // This reads the number of hours worked into numOfHours variable

 totalPay = hourlyRate * numOfHours; // This calculates total pay and stores it at totalPay

 Write(totalPay); // This displays (somewhere) the total pay

FindFedTax(totalPay)

 fedTax = totalPay * .30;

 Write(fedTax);

Lesson 1 Summary Outline
I.
Computer Systems

A.
Central Processing Unit (C.P.U.) Consists of the control unit and Arithmetic Logic Unit. The unit where programs are executed.

A.
Main Memory
where programs and data are stored for use by the C.P.U.

B.
Secondary Memory
where programs and data are filed for use at a later time

C.
Input Devices

devices used to get programs and data into the computer

D.
Output Devices
devices used to get programs and data out from the computer

II.
Programming Languages

A.

Computer Languages

1.
Machine Languages (ones and zeros)

2.
High Level Languages (human oriented languages)

B.

Compilers translate high level languages into machine code

III.
Computer Errors

A.
Grammatical Errors
syntax errors

B.
Run time Errors
errors exposed during the program execution (dividing by 0)

C.
Logic Errors

IV
Procedural Programming

A.

Variables

memory locations that contain values that can change

B.

Procedures

a group of related instructions that perform a certain task

C.

Operations

mathematical or logical operations that are performed on variables

D.

Calls

statements that activate procedures

Lesson 2: Introduction to Object-Oriented Programming
Object-Oriented Programming

Object-Oriented Programming (OOP) is similar to the procedural method, however it envisions the components of a program as real world objects. In this class we will both create objects and applications that use those objects. In looking at a Windows applications environment, we see icons (pictures) that represent certain actions. For example, a picture of a trash can may indicate the action of deleting a file. Instead of a complex command to delete the file, the picture is treating this process as an object (trash can).

Objects are made up of states and methods. The states or data items of an object are the components that define what the object is. These states describe the object’s attributes. An automobile object would have attributes such as make, model, year, color, price etc. All automobiles contain these attributes although the specific attributes would be different for different automobiles. One automobile object may have the following specific attributes: make (Dodge), model (Stratus), year (2000), color (red), price ($15,000). Another automobile object may have the following: make(Chevrolet), model(Impala), year(1966), price(2,000). States are very similar to variables in procedural programming.

Objects also can have methods to accomplish a task. Just like procedures in procedural programming may perform a certain action, methods in OOP perform certain actions. An automobile object can move, be washed etc. Methods describe how these actions are accomplished. While states of an object could be called adjectives that describe the components of the object, methods are verbs that describe the actions that can be applied to an object. Object-Oriented Programming binds the states (variables) and the methods (procedures) together in one package. This binding of the two is called encapsulation.

A method should be so well written that the user is unaware of the details of how the methods are executed. The user must simply understand the interface or interaction of the method to the object. For example, it is not necessary for someone to understand how a television remote control works in order to use the remote to change the stations or the volume. The user of the remote could be called a client that only knows how to use the remote to accomplish a certain task. The details of how the remote control performs the task are not necessary for the user to use the remote. Likewise an automobile is a complex mechanical machine with a simple interface that allows users without any (or very little) mechanical knowledge to start, drive and use it for a variety of functions. Drivers do not need to know what goes on under the hood. In the same way a user of an object does not have to understand how the objects methods are implemented.

Classes are the definitions from which objects are created. Classes and objects are often confused with one another; however, there is a subtle but important difference best explained by the following example. A plaster of Paris mold consists of the design of a particular figurine. When the plaster is poured into the mold and hardened, we have the creation of the figurine itself. A class is analogous to the mold, for it holds the definition of an object. The object is analogous to the figurine, for it is an instance of the class. Examples and further explanations are given later in the course.

Java
Java was designed in the early 1990s by Sun Microsystems. It was designed as a compact object-oriented language to be used for cellular phone applications. In just a few years, however, it provided the interactivity for the World Wide Web and has since become a popular development language. It is an architecturally neutral language which means that a Java program can run on any operating system on any computer (platform) that has a Java interpreter. A Java program is compiled into what is called bytecode rather than to the machine language of the computer. A special program called an interpreter translates the bytecode to the machine language of the particular computer. Any compiled Java program (the bytecode) will run on any machine that has a Java programming language interpreter. This makes Java very portable.

Java program -------------> bytecode --------------> Machine code

(source code) Compiler Interpreter

Java is also simpler than most other object-oriented languages and is patterned after C++.

Applets are mini-Java programs that can be downloaded and executed as part of a Web page. Although the lessons in this manual concentrate on console (non-graphical, non-Web page) applications, we do cover and look at and develop applets later in the course.

First Program in Java

Look at the following code:

// This is the first program that just writes out a simple message

public class First

{

public static void main(String[] args)

{

System.out.println("Now is the time for all good men");

System.out.println("to come to the aid of their party");

}

}

At first glance, the program looks very complex. We do not have to understand everything about the program to be able to run it and get results. We can, however, note a few things about this program.

We are creating a class that is called First
 that has a method called main that has two instructions. (Two System.out.println statements).

We return to this program in the first lab session and the next lesson.

Lesson 2 Summary Outline
I.
Object-Oriented Programming (OOP)

A.
Components of a program are viewed as objects
B.
States of an object describes the attributes of the object. Attributes describe what makes the object the object. Attributes of a car (such as tires, engine etc.) makes a car a car.

C.
Method– A method is a logical set of instructions that perform a certain task. Methods are verbs!!

D.
Encapsulation-The binding of states(variables, nouns) and methods together.

E.
Interfacing-The ability to use something without understanding the details of its operation.

F.
Class- the generic definition of a group of objects. The mold.

G.
An object is an instance of a class. Instance is a creation of an object from a class.

II.
Java

A.

Architecturally neutral–Java can run on any platform.

B.

bytecode–the code that a Java compiler generates

C.

Interpreter-a program on a particular platform that translates the bytecode to machine code.

A.

Applets are mini-Java programs that can be downloaded and executed as part of a Web page.

III.
First Java Program

public class First Definition of a class called First
{

public static void main(String[] args) Definition of the main method

{

System.out.println("Now is the time for all good men");

System.out.println("to come to the aid of their party");

}

}
Lesson 3: Introduction to Java
Program analysis
Everything done in Java is done within the confines of a class. Let’s revisit that first program introduced in Lesson 2 line by line.

// This is the first program that just writes out a simple message

public class First

{

public static void main(String[] args)

{

System.out.println("Now is the time for all good men");

System.out.println("to come to the aid of their party");

}

}

The first line:
// This is the first program that just writes out a simple message

is a comment. It is a comment because it begins with two slashes: //. Comments in a program are for humans only. The compiler ignores them completely. Although ignored by the computer, comments are very important for they give descriptions about the program that are most useful to programmers. Good programs will always be well documented, meaning that they will have plenty of comments to describe the logic of the program. Comments beginning with // last until the end of the line. Comments can also start with /* and continue until the symbols */ appear. The following are all comments:

//This program will calculate the net pay

/* Programmer: Harry Holliday

 Date: 1/1/2002

 Subject: Pay Roll

*/

The second line: public class First
is the heading of the class definition. Recall that a class gives the definition (the attributes and methods) of the objects that will be made. They are similar to the plaster of Paris molds that are used later to create objects. The heading of this class first contains the word public. public is an access modifier. An access modifier describes under what circumstance a class can be accessed. Public access is the most open and most frequently used type of access. Other types are learned later in the course. The second word class is an indication that a class is about to be described. The third word is the name that we choose for the class that we are describing. While the words public and class are reserved words in Java (words that are defined with special meaning by the Java language) the third word is made up by the programmer using specific rules. The rules for naming a class is as follows:

1.

A class name must begin with a letter of the alphabet (this can include non-English letters), an underscore, or a dollar sign. A convention used by many (but not required) is that the class begins with an uppercase letter of the alphabet and uppercase letters are used only as needed to improve readability. Ex. TaxRate

2.

A class name can contain only letters, digits, underscores, or dollar signs.

3.

A class name cannot be a Java reserved word
 or the values of true, false or null.

The contents of all classes (as well as methods) are enclosed within curly brackets ({ and }). Every opening bracket must have a corresponding closing bracket. It is best if this pair is in the same position on different lines. A class can contain any number of data items (attributes of the class) and methods. This particular class contains no data items and only one method.

The next line (not counting the brackets) is: public static void main(String[] args)
which is the method header for a very important method. Every Java application (as opposed to Applets) must include a main() method which is the first method to execute. The heading is complex and will only be understood after several lessons. We give just a brief description here. public is used just as it was in the class heading, as an access modifier. The reserved word static indicates that every member created for this class will have an unchanging and identical main() method. This implies uniqueness. The word void indicates that the method will not return a value when it is called. This concept is explained later in the course. The word main is the name of the method. The contents between the parenthesis following main represents an argument. String[] args is the argument. How it works will be discussed much later. Suffice it to say that these words must be included and will be used (by faith for now) in our application programs. Again notice that the body of methods (like classes) are enclosed in curly brackets.

The remaining two statements:

System.out.println("Now is the time for all good men");

System.out.println("to come to the aid of their party");

has already been discussed in the last lesson. They are calls to a method (println) that will print to the screen the contents of its argument: “Now is the time for all good men” for the first statement and “to come to the aid of their party” for the second statement. Statements in Java end with a semicolon.

Lesson 3 Summary Outline
I.
Comments

A.
Line comments begin with // and last until the end of the line

B.
Block comments begin with /* and last until the symbols */
II
Classes

A. Heading

public class NameOfClass

 {

 B. Body // list of Class data items and methods

 }

III.
main() method

 A. Heading

public static void main(String[] args)

 {

 B. Body // body of main consisting of various types of instructions

 }

IV.
Class naming rules

A.
A class name must begin with a letter of the alphabet (this can include non-English letters), an underscore, or a dollar sign. A convention used by many (but not required) is that the class begins with an uppercase letter of the alphabet and uppercase letters are used only as needed to improve readability. Ex. TaxRate

B.
A class name can contain only letters, digits, underscores, or dollar signs.

C.
A class name cannot be a Java reserved word
 or the values of true, false or null.

Lesson 4: Computer Memory and Data Storage
A sample Java Program
We look at another Java program whose components will be explained in this and the next lesson.

Sample Program example:

// This is a sample Java program

public class Sample

{

static final char BESTRATING = 'A';
 // This is a constant declaration

static final int HIGHESTGRADE = 100; // This is an integer

 // constant declaration

public static void main(String[] args)

{

char letterGrade;

 int numericGrade;

float average;

numericGrade = 80;

letterGrade = 'C';

average = 78.6;

System.out.println("Numeric grade is " + numericGrade);

System.out.println("Letter grade is " + letterGrade);

System.out.print("Best Rating is ");

System.out.println(BESTRATING);

System.out.print("Highest Grade is ");

System.out.println(HIGHESTGRADE);

System.out.println(“Average grade is “ + average);

}

}

By now we should be familiar with comments. Any line beginning with // is a comment and is ignored by the computer.

The line public class Sample should also be familiar to you. This is the heading for a class definition. The word public is a modifier, and class in an indication that we are about to define a class (in this case a class named Sample). The rest of the program is explained as we progress through this and the next lesson.

Memory
Memory storage is the collection of locations where instructions and data that are used by the instructions are temporarily stored. Recall from Lesson 1, that a computer only understands a sequence of 1's and 0's. These are binary digits or bits. (BInary digiTs) Eight of these brought together are called a byte, which is the most common unit of storage. These chunks of memory can be thought of as hotel mailboxes at the registration desk. The size of each of those boxes indicates the type of mail that can be stored there. A very small mailbox may only hold notes or postcards. Larger mailboxes can hold letters, while even larger ones can hold packages. Each mailbox is identified by a number or name of an occupant. We have identified two very important attributes of these mailboxes: the name or number which indicates which mailbox is being referenced and the size which indicates what type of “data” can be placed there.

Example: postcards Jim could be an indication that the mailbox called Jim can only hold postcards, while the statement packages Mary would indicate that the mailbox called Mary could hold large packages. Memory locations in a computer are identified by the same two attributes: data type and name.

Much of programming is getting data to and from memory locations and thus it is imperative that the programmer tell the computer the name and data type of each memory location that he or she intends to use. In the sample program the statement float average does just that. Float is a data type that indicates what kind of data can be stored and average is the name for that particular memory location.

Variables and Constants
The ability to change or not change the data stored could be a third attribute of these memory locations. Components of memory in which data values stored can change during the execution of the program are called variables. In our example, average (which is declared as having a float data type) is declared in the main method. Data types are discussed shortly. Components of memory in which data values stored are initialized once and never changed during the execution of the program are called constants. They are often declared outside of main and are preceded with two modifiers static and final.
static final char BESTRATING = 'A';

The above statement is a constant declaration. It sets aside a memory location that will be called BESTRATING and permanently (as long as the program is running) stores the letter ‘A’ in that location. Both static and final are modifiers. The modifier static is needed so that the main method can “access” the constant. The modifier final is an indication that the memory location will not be changed. A fuller definition of modifiers are examined in later lessons. The word char indicates the data type (type of data that can be stored there) to be character. Only one character can be stored in this location.
static final int HIGHESTGRADE = 100;
The above statement is also a constant declaration. In this case the location HIGHESTGRADE will store an integer value (int) that is set to 100. That value will NOT be changed during the program execution.

Look at the following three statements:

char letterGrade;

int numericGrade;

float average;

These three statements are called declarations because they reserve by name enough memory to hold the data type described. These are variable declarations. The first statement declares a memory location called letterGrade that will hold characters. The second declares a memory location called numericGrade that will hold integer numbers. The third declares a memory location called average that will hold floating point numbers.

Variables, like constants, can be given an initial value at declaration, but that value is not permanent and can be altered. For example:

int count = 7; //Defines a variable memory location called count that

 //has initially the value of 7

count = count + 1; //count is now altered
Identifiers in Java TC \l1 "
Identifiers are used to name variables, constants and many other components of a program. The following are the rules for naming identifiers:

1)
Identifiers must start with either a letter, an underscore(_) or a dollar sign ($).

2)
Identifiers cannot contain operators (+, - , * etc.).

3)
Identifiers cannot be a reserved word.

4)
Identifiers cannot be true, false, or null.

5)
Identifiers can be of any length, but should not be too long.

Standard Practices
Although not required by the Java language, the following conventions are often followed

1)
Class identifiers begin with an uppercase letter. The remaining letters or digits are lowercase.

2)
variables are lowercase. When two or more words are combined to make the variable name, uppercase letters are used for the first letter of all words after the first.

Ex. totalPay sumOfDigits netProfitMargin sum count

3)
Constants have all uppercase letters.

Data Types
As noted earlier, computer memory is composed of units identified by a name (like the room number of a hotel mailbox) and a data type. This data type indicates what kind of data can be stored, thus setting the size of that location.

Integer data type

Integers are numbers that do not contain any fractional component. They take up less memory than numbers with fractional components. Java has four data types that are integers: byte, short, int and long. The difference is strictly in the amount of memory (bytes) they reserve: byte reserving the least and long reserving the most. Larger integers may need the long data type.

The following four statements declare integer variables in Java:

short count;

byte dependents;

int sum;

long total;

Floating point data type
In computer science 3 = 3.0 is not a true statement. The number on the left is an integer and the number on the right is a real, or floating point, number (a number that has a fractional component). Although mathematically the two are equal, the computer stores them as different data types. Java uses both float and double to indicate floating point numbers, with double using more memory than float.

The following two statements declare floating point variables in Java.

float average;

double nationaldebt;

Character data type
Character data includes the letters of the alphabet (upper and lower cases), the digits 0-9 and special characters such as ! ? . , *. All these symbols combined are called alphanumeric. Each character data is enclosed with single quotes to distinguish it from other data types. Thus ‘8’ is different than 8. The first is a character while the second is an integer.

The following statement declares a character variable in Java.

char middleInitial;

Boolean data type
Boolean logic is based on one of two conditions: true or false. A boolean variable can hold only the value true or false. They are very useful in comparisons. Their usefulness is shown in later lessons. The following statement declares a boolean variable in Java.

boolean passing;

Lesson 4 Summary Outline
I.
Memory Locations

A.
Values are stored in the computer memory.

B.
Variables are memory locations whose values can change during the course of the program’s execution.

C.
Constants are memory locations whose values can not change during the course of the program’s execution.

D.
Both variables and constants are declared by giving a data type and name.

public class Sample

{

static final char BESTRATING = 'A';

// constant declarations

static final int HIGHESTGRADE = 100;

public static void main(String[] args)

{

char letterGrade;

 // variable declarations

 int numericGrade;

float average;

II.
Identifiers

A.
Identifiers must start with either a letter, an underscore(_) or a dollar sign ($).

B.
Identifiers cannot contain operators (+, - , * etc.).

C.
Identifiers cannot be a reserved word.

D.
Identifiers cannot be true, false, or null.

E.
Identifiers can be of any length, but should not be too long.
III.
Data Types

A.
Integer Data Type (Integer numbers)

byte count; short sum; int total; long sum;

B.
Floating Data Type (Floating point numbers).

float payCheck; double bill;

C.
Character Data Type (one character)

char initial;

D.
Boolean Data Type (true or false values)

boolean passing;

Lesson 5: Assignment and Output Statements
Fundamental Instructions

Instructions in a program are commands for the computer to perform some operation or job. Many languages identify five basic fundamental commands.

1)
Assignment Command

2)
Output Command

3)
Input Command

4)
Selection operation command

5)
Loop command

 We study the first two in this lesson.

Assignment Command

These statements place values in memory locations. The left side of an assignment statement consists of one and only one variable. The right side consists of an expression. An expression is any manipulation of literal numbers (actual numbers such as 7 or 38 etc.), or the contents of constants and/or variables, that will “boil down” to one value. That value is placed in the memory location of the variable on the left. Java uses = as the separator between the left and right side of the assignment statement. Those new to programming often get this confused with equality; however = in Java is not equality but rather the symbol to indicate assignment. The = in Java is read as “is assigned the value of”.

int count;

int total;

total = 10; // 10 is a literal that is placed in the memory

 // location called total

count = 3 + 4; // The right hand side of the statement is evaluated to

 // produce a 7. count is assigned the value of 7.

total = total + count; // The right hand side is evaluated (10 +7)

 // and 17 is placed in the memory location called

 // total.

This last statement may seem a bit confusing. Starting with the right side, it says to get the value that is in total (10 in this case) and add it to the value that is in count (7 in this case), then store that combined sum (17) in the memory location called total. Notice that total, which was initially 10, gets changed to 17.

The following statements from the Sample program of Lesson 4 should now be clear to you.

char letterGrade;

 int numericGrade;

float average;

numericGrade = 80;

letterGrade = 'C';

average = 78.6;

Output Statements
We have looked at the output statements in earlier lessons; however we add to that discussion here.

Look at the following statements from the Sample program in Lesson 4.

System.out.println("Numeric grade is " + numericGrade);

System.out.println("Letter grade is " + letterGrade);

System.out.print("Best Rating is ");

System.out.println(BESTRATING);

System.out.print("Highest Grade is ");

System.out.println(HIGHESTGRADE);

System.out.println(“Average grade is “ + average);
The first output statement has an added feature that we have not examined. The + symbol acts as a separator between 2 operations. We can see that the words Numeric grade will be printed; however something else is occurring. The + indicates that we have “added” another job for this command. What follows the + is the variable numericGrade. This command will also print the CONTENTS of the numericGrade variable (80 in this case).

The third and fifth output statements are also different. These commands have print rather than println. When an output statement uses the println command, a carriage return is added at the end of the operation. When an output statement uses the print command, a carriage return is not added to the operation.

The following is the output from this commands:

Numeric grade is 80

Letter grade is C

Best Rating is A

Highest Grade is 100

Average grade is 78.6

Make sure you understand why this output is printed.

Java uses the semicolon as a statement terminator.

Escape Sequences

A carriage return is a non-printable character. It performs an operation. An escape sequence is necessary to store such operations. An escape sequence begins with a backslash. The following are some escape sequences in Java:

\b

Backspace

\f

Form Feed

\n

Newline or line feed

\r

Carriage return

\t

Tab

 Look at the following 2 statements.

System.out.println(“Hi there”);

System.out.print(“Hi there\n”);

They both perform the same thing. The first has a carriage return after writing “Hi there” because of the use of the println statement. The second has a carriage return after writing “Hi there” because of the \n within the literal string.

Lesson 5 Summary Outline
I.
Fundamental Commands

A.
Assignment Command

B.
Output Command

C.
Input Command

D.
Selection operation command

E.
Loop command
II.
Assignment Command

A.
The left side of an assignment statement consists of one and only one variable. The right side consists of an expression. The value of that expression is placed in the memory location of the variable on the left.

B.
Java uses the = symbol as the assignment operator.

III.
Output Command

A.
System.out.println(“ literal string” + variable);

This prints out the words between the double quotes and the contents of the variable.

B.
System.out.println(); Has an automatic carriage return after the output

C.
System.out.print(); Has no automatic carriage return after the output
Lesson 6: Anatomy of a Program &

 Programming Style

Review of the Anatomy of a Program

Comments

Comments are very important because they document what a program does and how it does it. Comments are ignored by the compiler but serve programmers that may have to alter and debug the program. There are two methods of writing comments.

//
This is a comment

/* This is a comment */

Statements (Commands)

Statements represent actions or a sequence of actions. So far we have studied the assignment statement and the output statement.

Blocks

A pair of braces { } define a block that groups statements together. Classes, methods are all composed of blocks.

Classes

A class is the essential component in Java. It is a blueprint for objects. Recall the Plaster of Paris mold analogy. Classes will be understood over an extended period of time through this course. A program is defined by using one or more classes. Every Java program has at least one class. The class may contain data declarations and method declarations.

Methods

A method is a collection of statements that performs a sequence of operations. Methods describe the actions of a class. Methods are very important in Java and will be extensively examined in this course.

The main() Method is required of every Java application for it provides the flow of control. It’s heading is: public static void main(String[] args)
Reserved Words

Reserved words have special meanings for the compiler and cannot be used for other purposes (such as variable or constant names).

Modifiers

Modifiers are reserved words that specify properties of methods, data and classes.

The public modifier of a data, method or class allows them to be accessed by other programs.

The private modifier of a data, method or class does not allow them to be accessed by other programs.

The static modifier allows the data, or method to be used anywhere within the class. One of the lab assignments demonstrate this modifier’s use.
Programming Style and Documentation

The appearance of the program is very important. It allows for easier reading and understanding which is critical in programming environments. Programming style and documentation is as important as the code itself. It is something that many new programmers have difficulty incorporating; however it is essential to develop quality software products.

Comments

Comments need to be included at the beginning of the program to explain what the program does and certain important features. Comments should also be used to explain each method and complex logic. Comments should be precise and short so that they do not distract from the appearance of the program.

Indentation

Consistent indentation makes the programs clear and easy to understand. Corresponding braces should always be in the same position of different lines. Each subcomponent or block should be indented a few spaces from the outer block. A block is a group of statements surrounded by braces. There are several formats used. This text uses what is called the next-line style.

public class Style

{

 public static void main(String[] args)

 {

 System.out.println(“This is the next-line style”);

 }

}

Naming Conventions
Descriptive names should be used for classes, constants, methods and variables. Remember that names are case-sensitive.

The following is a list of standard conventions.

1)
Variables and methods always use lowercase letters. Names consisting of more than one word concatenated together has the first letter of all words AFTER the first in uppercase.

2)
Class names use uppercase for the first letter of each word in the name.

3)
Constants have all uppercase letters.

Lesson 6 Summary Outline
I.
Anatomy of a Program

A.
Comments–used to describe the purpose of the program and major program units.

B.
Blocks- enclosed in braces

C.
Classes- basic component of Java programs

D.
Methods- describes the actions of classes

E.
Reserved Words -Java words used for a unique purpose

F.
Modifiers- specifies properties of data, methods and classes

II.
Programming Style

A.
Naming conventions

1.
Variables and methods (lowercase except for first letter of subsequent words)

2.
Constants (all uppercase)

3.
Classes (first letter of each word uppercase, all other letters are lowercase)

B.
Use proper indentation of blocks

C.
Use concise and proper comments

Lesson 7:
Java Basics: Assignment, Write, Read

I.
Statements

We learned that there are six basic fundamental instructions in traditional languages: read, write, assign, call to a method, loop and conditional.

Review of the Assignment statement

Variables

A variable is a memory location (that has a name and an associated data type) whose value can change or be altered during the course of the program.

An assignment statement in Java has two components a left and a right side separated by the = operator. The = operator in this case does not mean equal but rather assign the value to.

The left side (to the left of the = operator) contains one and only one variable (memory location with a name that can change the value it contains). The right side contains an expression. An expression is a group of variables, number or numbers or any combination in which after it is evaluated it produces one and only one value.

Example:

total = total + 50;

The left side contains only the one variable total. The right side is an expression that takes the current value that is in total and adds 25 to it. The new one value is now assigned to total.

Thus if total contained the value of 100 before this statement then it will contain 150 after this statement is executed.

Other examples of assignment statements.

payRate= 9.25

grossPAY= grossPAY +100;

grossPay=payRate * hours;

euros= dollars * eurosPerDollar;

Write statement

A write statement is used to get information out from the computer to the user. It is used to print the result of some operation or to prompt the user for some feedback.

int hours=10;

System.out.print("You worked " + hours + " hours this week ");

The above two instructions would produce the following to the screen

You worked 10 hours this week.

int hours=20;

System.out.println("You worked");

System.out.println(hours);

System.out.println("hours this week");

The above four instructions would produce the following to the screen.

You worked

20

hours this week.

Read statement

The read statement gets a value from the user or a file. In this lesson we discuss how data is obtained from the user at a keyboard and how that value is stored in a variable.

The read statement is a bit complex in Java. It requires a class that is able to read the data types in Java from the keyboard. The class we use is called the Scanner Class. It has several methods (one for each of the basic data types defined in Java).

Review of the data types in Java.

Integer data types: Integers are numbers that do not contain fractional components. Java has four types of integers

byte (The smallest integer type) Takes up 1 byte or 8 bits of space -128 - 127

short 16 bits of space -32,768 - 32,767

int 32 bits of space -2,147,483,648 - 2,147,483,647

long 64 bits of space -9,223,372,036,854,775,808 - 9,223,372,036,854,775,807

Floating point decimal numbers: Numbers that have a fractional component

float 32 bits of space

double 64 bits of space

boolean data type: takes on either true or false values. Only two values in this type

boolean

character data type: Can hold one value of any legitimate character in the ASCII code

char

Look at the following algorithm that calculates simple gross pay based on hours worked and hourly pay rate. The hours worked and hourly pay rate will be read in from the keyboard

Notice that since we are reading from the keyboard we should include a write statement to the monitor to tell the user what input we what.

RULE: Every read that comes from the keyboard should be preceded by a write statement!

Java has a special Scanner Class that is used in reading data from an input stream (explained in a later lesson) that allows data to be entered from the keyboard. But this class has to be brought in (imported) to our program.

Since we will be getting the hours worked and pay rate from the keyboard, we will import the Scanner class that is part of the java language.

Java has thousands of predefined classes that are organized into groups called packages containing related classes. To use a class from one of these packages we import or bring those packages into our program. The Scanner class, which allows us to get data into our program is found in the utility package (util). And so this statement tells us to import the class Scanner from the util package. Common classes that are used frequently are stored in a package called lang that is automatically imported for us but we have to import the Scanner class

import java.util.Scanner;
Once we have the Scanner class in our program we create an object from that class which we can call anything we want. In this case we called it kbd for keyboard.

Scanner kbd=new Scanner (System.in);

Once we have that we can bring in data and store it in variables using various methods of that class:

Methods of Scanner

 nextDouble() To bring in a double data value from the keyboard

 nextInt() To bring in an int data type value from the keyboard

We can use these methods to bring in data to a variable.

Example:

double hours = kbd.nextDouble();

This is a read statement that creates a variable called hours (with double data type) and then reads a value from the keyboard and places that value in the variable hours.

double payRate= kbd.nextDouble();

This is a read statement that creates a variable called payRate(with double data type) and then reads a value from the keyboard and places that value in the variable payRate.

Each of these statement are preceded by write statements (System.out.print) that will indicate what the user should type in.

Closing the object built from Scanner.

It is a good idea to close the object built by Scanner before ending the program.

kbd.close(); // This closes the object built by Scanner

The following is the java program for the gross pay algorithm.

import java.util.Scanner;

public class GrossPay {

/** This program will calculate grossPay by

 * reading in hoursWorked and payrate and then

 * multiplying those values together to find gross pay

 */

public static void main(String[] args) {

Scanner kbd=new Scanner(System.in); //creates an object

System.out.print("Please input the hours worked "); // Write line 1

double hours=kbd.nextDouble();

 // Read line 2

System.out.print("Please input the pay rate"); // Write line 3

double payRate=kbd.nextDouble(); // Read line 4

double grossPay = hours * payRate; // Assignment line 5

System.out.println("The grossPay is "+ grossPay); // Write line 6

kbd.close();

}

}

FORMATTED OUTPUT

When we print data to the screen we can also specify how we want the data to look. This is done through formatted output.

Let’s look at a program that converts dollars to Euros. In this program we will read the conversion rate from the keyboard as well as the number of dollars we want converted. When we print the dollars and euros we want them printed with 2 numbers to the right of the decimal point. We do that by using the printf instead of the print or println statements.

The printf() statement allows us to format the output. For a real number the (one with a fractional component) the number of digits that appear to the right of the decimal pont is called the precision of the number.

System.out.printf("%.2f dollars = %.2f euros", dollars,euros);

Arguments are attributes of a statement that are in parenthesis.

The first argument of the printf statement is called the format-string and it must be enclosed in double quotes (as all strings must be). This gives the format in which the number(s) are to be printed. This contains a placeholder (which begins with the % symbol). “%.2f dollars states the first variable (after the string) should be formatted as a fixed decimal number with a precision of 2. dollars = is a literal that will be printed just as it is indicated. We then have another placeholder that begins with %2.f which will be the format for the next variable after the format string (in this case euros). Note how they are matched.

The complete program is as follows:

/**

 This program will input dollars and convert them to euros.

 Author: Dean DeFino

 Date: June, 2014

*/

import java.util.Scanner;

public class DollarsToEuros {

public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);

double dollars; // the amount of dollars read in from keyboard

double eurosPerDollar; // exchange rate of dollars to euros

double euros; // the amount of euros converted

System.out.println("How many dollars do you want to convert?");

dollars=keyboard.nextDouble();

System.out.println("What is the euros-per-dollar exhancge rate?");

eurosPerDollar = keyboard.nextDouble();

euros=dollars * eurosPerDollar;

System.out.println("The number of euros is "+ euros);

System.out.println(euros+" euros");

System.out.printf("%.2f dollars = %.2f euros", dollars,euros);

keyboard.close();

} // end of main

} // end of class

Note: The complete format for floating point decimals is %10.2f. This will print the number in 10 spaces (including the decimal point) with 2 places to the right of the decimal point.

Format for an integer is %5d This will print an integer in 5 places right justified.
Example:

System.out.printf("%10d %8.2f",9,8.7654);

Will print

 9 8.77
Lesson 7 Summary Outline

Data can be read from the keyboard. To do this we import the Scanner class

import java.util.Scanner;
Once we have the Scanner class in our program we create an object from that class which we can call anything we want. In this case we called it kbd for keyboard.

Scanner kbd=new Scanner (System.in);
Once we do this we can read in values based on their data types.

int hours=kbd.nextInt();

double payRate=kbd.nextDouble();
Each read instruction from the keyboard must be preceded by a write statement that shows what input is expected.

System.out.print("Please input the hours worked ");

double hours=kbd.nextDouble()
The object made by Scanner should be closed.

kbd.close();

Write statements can be formatted using the printf statement.

System.out.printf("%.2f dollars = %.2f euros", dollars,euros);

Arguments are attributes of a statement that are in parenthesis.

The first argument of the printf statement is called the format-string and it must be enclosed in double quotes (as all strings must be). This gives the format in which the number(s) are to be printed. This contains a placeholder (which begins with the % symbol). “%.2f dollars states the first variable (after the string) should be formatted as a fixed decimal number with a precision of 2. dollars = is a literal that will be printed just as it is indicated. We then have another placeholder that begins with %2.f which will be the format for the next variable after the format string (in this case euros).

Lesson 8:
Java Basics: Conditional Statement

Relational Operators
You have already seen that the statement total = 5 is an assignment statement; that is, the integer 5 is placed in the variable called total. Nothing relevant to our everyday understanding of equality is present here. So how do we deal with equality in a program? How about greater than or less than? Java allows the programmer to compare numeric values using relational operators. They are the following:

>
 Greater than

<
 Less than

> = Greater than or equal to

< =
 Less than or equal to

= = Equal to

! = Not equal to

An expression of the form num1 > num2 is called a relational expression. Note that it does not assert that num1 is greater than num2. It actually tests to see if this is true. So relational expressions are boolean. Their value must be either true or false. The statement cost!=9 is false if cost has value 9 and true otherwise.

The if Statement
Sometimes we may only want a portion of code executed under certain conditions. To do so, we use conditional statements. For example, if you are writing a payroll program to compute wages, then the program should only compute overtime pay if the employee worked more than 40 hours in a given week. Otherwise, when the program is executed the overtime portion of the code should be bypassed. An if statement is one kind of conditional statement.

Consider the following program:

Sample Program 8.1:

// This program prints "You Pass" if a student's average is above 60 or prints

// "You Fail" otherwise

import java.util.Scanner;

public class PayRoll

{

 public static void main(String[] args)

 {

Scanner kbd=new Scanner(System.in);

double average;

System.out.println("Please input your average");

average = kbd.nextDouble();

 if (average >= 60) // note the use of a relational operator System.out.println("You Pass");

if (average < 60)

 System.out.println("You Fail");

kbd.close();

 }

}

The if/else Statement
In Sample Program 8.1 we used two if statements. A more elegant approach would be to use the if/else statement as follows:

if (average >= 60)

 System.out.println(“You Pass”);

else

 System.out.println(“You Fail”);

In every if/else statement the program can take only one of two possible paths. Multiple statements can be handled using curly braces.

If you want to conditionally execute several statements using if, the following syntax is required:

import java.util.Scanner;

public class LogicalOperators

{

 public static void main(String[] args)

 {

Scanner kbd=new Scanner(System.in);

 double average;

System.out.println("Please input your average");

average = kbd.nextDouble();

if (average >= 60) // note the use of a relational operator
 System.out.println("You Pass");

if (average < 60)

 System.out.println("You Fail");

if (average >= 60)

{

System.out.println("Congratulations");

System.out.println("You Pass");

}

else

{

 System.out.println("I’m sorry");

 System.out.println("You Fail");

}

kbd.close();

 }

}

Note the curly braces surrounding the set of statements to be conditionally executed.

The if/else if Statement Nested conditions
The if/else statement works well if there are only two possible paths to follow. However, what if there are more than two possibilities? For example, suppose we need to decide what letter grade you get based on your score.

double grade;

System.out.println (“Please input your score”);

double score = kbd.readDouble();

if (score >= 90)

 System.out.println(“You get an A”);

else if (score >= 80)

 System.out.println(“You get a B”);

else if (score >= 70)

 System.out.println(“You get a C”);
else if (score >= 60)

 System.out.println(“You get a D”);
else

 System.out.println(“You fail”);
The last else is a trailing else which is the default if non of the other conditions are true.

Logical Operators
By using relational operators Java programmers can create relational expressions. Programmers can also reverse the “truth value” of a single expression using logical operators. For example, instead of a statement such as “if it is sunny, then we will go outside”, one may use a statement such as “if it is sunny and it is warm, then we will go outside.” Note that this statement has two smaller statements “it is sunny” and “it is warm” joined by the AND logical operator. To satisfy the if conditional, both the sunny and warm requirements must be met.

The NOT operator negates a single statement. For example, “it is sunny” can be negated by “it is not sunny”.

The OR operator is similar to the AND in that it connects two statements. However, there is an ambiguity about the meaning of the word or in English. In the statement “tonight at 8:00 I will go to the concert in the park or I will go to the stadium to see the ball game”, the word or is exclusive. That is, I can go to the concert or to the game but not both. However, in the statement “I need to draw an ace or a king to have a good poker hand”, the word or is inclusive. In other words, I can draw a king, an ace or even both and I will have a good hand. So we have a choice to make. Let A and B be two statements. A OR B could mean A or B but not both. It could also mean A or B or both. In computer science we use the second meaning of the word or. For example, in the statement “if it is sunny or it is warm, then I will go outside,” there are three scenarios where I will go outside: if it is sunny but not warm, if it is warm but not sunny, or if it is sunny and warm.

The syntax used by Java for logical operators is the following:

AND

&&

OR

 | |

NOT !

if (score >= 90)

 System.out.println("You get an A");

if ((score <90) && (score >=80))

System.out.println("You get a B");

if ((score <80) && (score >=70))

System.out.println("You get a C");

if ((score <70) && (score >=60))

System.out.println("You get a D");

if (score <60)

System.out.println("You get an F");
Consider the following:

if (dollars <= 0 || !(accountActive))

 System.out.println(“ You may not withdraw money from the bank”);
It is good programming practice to enclose the operand after the (!) operator in parentheses. Unexpected things can happen in complicated expressions if you do not. When will this code execute the System.out.println statement? What type of variable do you think accountActive is ?
Lesson 8 Summary Outline

Conditional Statements

if (boolean condition)

 {

 instructions;

 }

else if (boolean condition)

 {
 instructions;

 }
else
 {

 instructions;

}
Relational operators

>
 Greater than

<
 Less than

> = Greater than or equal to

< =
 Less than or equal to

= = Equal to

! = Not equal to

Logical operators

AND

&&

OR

 | |

NOT !

Lesson 9:
Java Basics: Loops

Increment and Decrement Operator

To execute many algorithms we need to be able to add or subtract 1 from a given integer quantity. For example:

count = count + 1; // what would happen if we used ==

 // instead of = ?

 count += 1;
Both of these statements increment the value of count by 1. If we replace “+” with “-” in the above code, then both statements decrement the value of count by 1. Java also provides an increment operator ++ and a decrement operator -- to perform these tasks. There are two modes that can be used:

count++; // increment operator in the postfix mode

count-- ; // decrement operator in the postfix mode

 ++count; // increment operator in the prefix mode

 --count; // decrement operator in the prefix mode
The two increment statements both execute exactly the same. So do the decrement operators. What is the purpose of having postfix and prefix modes? To answer this, consider the following code:

int age = 49;

 if (age++ > 49)

 System.out.println(“You have made it to the half-century mark !”;
In this code, the System.out.println statement will not execute. The reason is that in the postfix mode the comparison between age and 49 is made first. Then the value of age is incremented by one.

Since 49 is not greater than 49, the if conditional is false. Things are much different if we replace the postfix operator with the prefix operator:

int age = 49;

 if (++age > 49)

 System.out.println(“You have made it to the half-century mark !”;

In this code age is incremented first. So its value is 50 when the comparison is made. The conditional statement is true and the System.out.println statement is executed.

The while Loop
Often in programming one needs a statement or block of statements to repeat during execution. This can be accomplished using a loop. A loop is a control structure that causes repetition of code within a program. Java has three types of loops. The first we will consider is the while loop. The syntax is the following:

while (expression)

 {

 statement_1;

 statement_2;

 !
 statement_n;

 }
If there is only one statement, then the curly braces can be omitted. When a while loop is encountered during execution, the expression is tested to see if it is true or false. The block of statements are repeated as long as the expression is true. Consider the following:

Sample Program 9.1:

public class Factorial

{

 public static void main(String[] args)

 {

int num = 5;

 int numfac = 1;

while (num > 0)

numfac = numfac*num-- ; // note the use of the decrement

 // operator in the postfix mode

System.out.println(" 5! =" + numfac);

 }

}

This program computes 5!=5*4*3*2*1 and then prints the result to the screen. Note how the while loop controls the execution. Since num = 5 when the while loop is first encountered, the block of statements in the body of the loop is executed at least once. In fact, the block is executed 5 times because of the decrement operator which forces the value of num to decrease by one every time the block is executed. When num=0 the expression num > 0 is false and so the loop is exited. Then the System.out.pringln statement is executed.

What do you think will happen if we replace numfac*num-- with just numfac*num in the above code? Without the decrement operator, num always has a value of 5. This means that the expression num > 0 is always true! If we try to execute the modified program, the result is an infinite loop, i.e. a block of code that will repeat forever. One must be very cautious when using loops to ensure that the loop will terminate.
Counters
Often a programmer needs to keep track of the number of times a particular loop is repeated. This can be done using a counter, i.e. a variable that is incremented or decremented each time a loop repeats. Sample Program 9.2 computes the test average for scores entered by the user. A counter is used to keep track of the number of test scores that the user enters. Execution is controlled by a while loop that terminates when the user enters the sentinel value -1. A sentinel is used to indicate the end of a list of values. We chose -1 for this value since it is an invalid test score. It would not make sense to use a sentinel value between 0 and 100 since this is the range of valid test scores.

Sample Program 9.2

import java.util.Scanner;

public class whileLoop {

 public static void main(String[] args) {

 Scanner kbd=new Scanner(System.in); //creates an object

double score;

double total=0.0;

double average;

int counter=0;

System.out.println("Enter your score on test " + (counter +1) + " To exit, enter a negative number");

score=kbd.nextDouble();

while (score >=0)

{

 counter++;

 total=total+score;

 System.out.println("Enter your score on test " + (counter +1)+ " To exit, enter -1");

 score=kbd.nextDouble();

}

if (counter >0)

{

 average=total/counter;

 System.out.print(" Your average based on " + counter + " test scores is ");

 System.out.printf("%.2f", average);

}

else

{

 System.out.println ("No valid scores entered");

}

kbd.close();

} // close main

}// close class

TRACE: Do a trace with the following scores 90 100 95

score

total

average

counter

 total + score total/counter

-0.0

0.0

0

90

90

1

100

190

2

95

285

3

-1 No loop

285/3 95

Lesson 9 Summary Outline
I.
Increment & Decrement Operator

count++; // increment operator in the postfix mode

count-- ; // decrement operator in the postfix mode

 ++count; // increment operator in the prefix mode

 --count; // decrement operator in the prefix mode

balanceDue -= payment; // balanceDue = balanceDue - payment;

balanceDue += lateFee; // balanceDue = balanceDue + lateFee;

doubleIt *= 2; // doubleIt = doubleIt * 2;

halfIt /= 2; // halfIt = halfIt / 2;

II
while Loop

while (expression)

 {

 statement_1;

 statement_2;

 !
 statement_n;

 }
III.
counter - a variable that is incremented or decremented each time a loop repeats.

IV.
 sentinel value - a sentinel is used to indicate the end of a list of values.

Lesson 10: Math Class &

Arithmetic Operators
Arithmetic Operators
Programming has the traditional arithmetic operators:

addition +

subtraction -

multiplication *

division /

modulus %

Integer division occurs when an integer (or number stored in a variable declared to be integer) is divided by an integer (or number stored in a variable declared to be integer). The result is always an integer. Thus 9 / 2 will give the answer 4 not 4.5! For this reason there are two division operations for integer numbers. The % is used as an operator for integer division to give the remainder of a division operation. 9 / 2 gives 4 while 9 % 2 gives 1 (the remainder of the division).

 Example:

int count = 9;int div = 2;

int remainder;

int quotient;

quotient = count / div;

remainder = count % div;

The value of 9 / 2 is 4 with remainder 1.

Do you see that quotient gets the value of 4 and remainder gets the value of 1?

Expressions
Recall from Lesson 5 that the assignment statement consists of two parts: a variable on the left and an expression on the right. The expression is converted to one value that is placed in the memory location corresponding to the variable on the left. These expressions can consist of variables, constants and literals combined with various mathematical operations. It is important to remember the mathematical precedence rules which are applied when solving these expressions.

Precedence rules in order of priority
1)
Anything grouped in parenthesis is top priority

1)
Unary negation example: -8

2)
Multiplication, Division and Modulus * / %

3)
Addition and Subtraction + -

Example:
 (8 * 4/2 + 9 - 4/2 + 6 * (4+3))

 (8 * 4/2 + 9 - 4/2 + 6 * 7)

 (32 /2 + 9 - 4/2 + 6 * 7)

 (16 + 9 - 4/2 + 6 * 7)

 (16 + 9 - 2 + 6 * 7)

 (16 + 9 - 2 + 42)

 (25 - 2 + 42)

 (23 + 42) = 65

Converting Algebraic expressions to Java expressions
One of the challenges of learning a new computer language is the task of changing algebraic expressions to their equivalent computer instructions.

Example:

4y(3-2)y+7 How would this algebraic expression be implemented in Java?

4 * y * (3-2) * y + 7
Other expressions are a bit more challenging. Consider the quadratic formula:

[image: image1]

 ADVANCE \u 6

 ADVANCE \d 11

 SHAPE * MERGEFORMAT
[image: image2]

 ADVANCE \u 11
[image: image3]

 ADVANCE \u 13
We need to know how Java handles operations such as the square root and squaring .

Just as we used the System class in printing information to a screen, we can use the Math class to perform certain mathematical operations such as square root and squaring function.

The Math class is imported (brought in) automatically into your programs. The math class has several methods associated with it. Recall that a method represents actions that a class can take. It would make sense then that the Math class would have such operations as finding a square root, a tangent etc. Appendix E gives a list of common Math class methods.

Exponents are handled by the Math.pow(number,exp) method where number indicates the base and exp is the exponent.

23 ----------- Math.pow(2,3)

59 ----------- Math.pow(5,9)
Square roots are handled by Math.sqrt(n)

[image: image4]

 ADVANCE \u 4 ----------- Math.sqrt(9)
Look at the following Java statement and try to determine what it is doing.

formula1 = (-b + Math.sqrt(Math.pow(b,2) -(4 * a * c))) / (2 * a);

formula2 = (-b - Math.sqrt(Math.pow(b,2) -(4 * a * c))) / (2 * a);

(These are the roots from the quadratic formula in Java format)

Look at the following program:

// Sample Program that shows the use of two Math class methods

public class Sample

{

 public static void main(String[] args)

 {

 int b=9, a=2, c=4;

 double sqroot, formula1, formula2;

 sqroot=Math.sqrt(b);

 System.out.println("The square root of " + b + " is "+sqroot);

 formula1 = (-b + Math.sqrt(Math.pow(b,2) -(4 * a * c))) / (2 * a);

 formula2 = (-b - Math.sqrt(Math.pow(b,2) -(4 * a * c))) / (2 * a);

 System.out.println

 ("The values of the quadratic formula are " + formula1

 + " and " + formula2);

 }

}

Make sure you understand this program. It prints out the following:

The square root of 9 is 3.0

The values of the quadratic formula are -0.5 and -4.0

Lesson 10 Summary Outline

I.
Arithmetic Operators

A.
addition +

B.
subtraction -

C.
multiplication *

D.
division / (For integer division this gives just the quotient of a division operation)

E.
modulus % (This gives the remainder of a division operation)

II
Precedence rules in order of priority

A.
Anything grouped in parenthesis is top priority

B.
Unary negation example: -8

C.
Multiplication, Division and Modulus * / %

D.
Addition and Subtraction + -

III.
Math class methods

A.
abs(x)

Absolute value of x

B.
pow(x,y)
xy

C.
sqrt(x)

Square root of x

IV.
Converting expressions to Java statements

[image: image5]

 ADVANCE \u 13

formula1 = (-b + Math.sqrt(pow(b,2) -(4 * a * c))) / (2 * a);

formula2 = (-b - Math.sqrt(pow(b,2) -(4 * a * c))) / (2 * a);

Lesson 11: Methods &

Data Type Conversions

Data type conversions
Recall the discussion of data types from Lesson Set 2. Whenever an integer and a floating point variable (object) or constant are mixed in an operation, the integer is changed temporarily to its equivalent floating point. This automatic conversion is called implicit type coercion. Whenever arithmetic operations with operands of unlike types occurs, Java chooses a unifying type for the result In essence the data type with the larger memory location is the type that is implicitly (automatically) chosen.

Type conversions can be made explicit (by the programmer) by placing the value to be changed in parentheses and placing before it (to the left) the name of the new type. This is called type casting or type conversion.

Examples:

int count = 7;

double sum = 2.5;

count = count * sum;

// integer count becomes double This is

// implicit conversion (Type coercion)

count = (int)sum;

// float to integer; however this is

 // type casting (Explicit conversion)

If two integers are divided, the result is an integer that is truncated. This can create unexpected results.

Example:

int num_As = 10;

int totalgrade = 50;

float percent_As;

percent_As = num_As / totalgrade;

In this problem we would expect percent_As to be .20 since 10/50 is .20. However since both num_As and totalgrade are integers, the result is integer division which gives a truncated number. In this case it is 0. Whenever a smaller integer value is divided by a larger integer value the result will always be 0. We can correct this problem by type casting.

percent_As = (float)num_As / totalgrade;

Notice that num_As is now converted to a float and we have a float divided by the integer totalgrade. That creates a type coercion into the floating number 0.20 which is now placed in percent_As giving us the value we expect.

Methods with no arguments

We now want to begin examining in detail the various components making up the anatomy of a program. Recall that a method is a series of statements that carry out some task. A method is reuseable. After its creation the method can be used in any program that needs it. A method must include the following:

1)
A header (method declaration)

2)
A set of curly brackets

3)
A body contained within the curly brackets

The method declaration (header) contains the following:

1)
Optional access modifiers

2)
The return type of the method

3)
The method name

4)
A set of parenthesis

5)
An optional list of arguments (multiple arguments are separated by commas)

Modifiers

Recall that access modifiers determine the type of access a method gives. Although Methods can have several types of access modifiers (public, private, friendly, protected private protected or static) most methods are given the public access modifier. This is the most open of all modifiers. The public modifier means that any class can access the method. Any method that can be used from anywhere within the class has the keyword modifier static.

The return type of the method will be come clearer in later lessons. For now we discuss only methods that do not return any values and thus the return type is void (nothing).
We have used methods of already existing classes (Math class methods). Now we are ready to develop our own. Some methods (such as the square root method of the Math class) require information. Information is passed to or from a method through parameters. Parameters are the components of communication between methods. Some methods do very simple tasks (such as only printing statements to the screen) and do not require parameters. Such methods have a set of parenthesis with nothing between them.

public static void address() // This is a method with no arguments heading
public is the access modifier that says all classes can have access to this method

static is the modifier that allows the method to be used anywhere in the class

void indicates that this method will NOT return a value

address is the particular name of this class

() All methods have parenthesis but this method has no arguments and so nothing is between the parenthesis
A method has to be activated. A method provides a service but that service must be asked for. A call to a method with no arguments consists of only the name of the method and a set of closed parenthesis followed by a semicolon.

address(); This is the call to a method named address.

Look at the following program:.
public class Sample

{

 public static void main(String[] args)

 {

 personName();

 address();

 phone();

 }

 public static void personName()

 {

 System.out.println("Name: Harry Wickerbean");

 }

 public static void address()

 {

 System.out.println(" 119 Hayward Ave. ");

 System.out.println(" Fruitland, PA");

 System.out.println("21123");

 }

 public static void phone()

 {

 System.out.println("444- 234-4534");

 }

}
This class consists of four methods. In addition to the required main method, the class contains methods called personName, address, and phone. These three methods contain only output statements. The true purpose of the main method is shown here. Every class requires the main method, but it purpose should be not much more than calling other methods. main is like a contractor of a large construction project. It’s purpose is to call sub-contractors to do specific jobs. In this case main calls a method called personName which is activated and prints a name to the screen. Control is then sent back to main which then calls a method called address which prints an address to the screen. Control is sent back to the calling method (the method that activates another method). The process continues until all the commands are executed. Notice that the order of the printing of the statements could be altered by altering the order in which main calls the other methods.

Lesson 11 Summary Outline
I.
Data Type Conversions

A.
Type Coercion (implicit conversion)

B.
Type Casting (explicit conversion)

C.
integer / integer always produces an integer

II
Methods consist of

A.
A header (method declaration)

B.
A set of curly brackets

C.
A body contained within the curly brackets

III.
A method declaration (header) contains the following:

A.
Optional access modifiers

B.
The return type of the method

C.
The method name

D.
A set of parenthesis

E.
An optional list of arguments (multiple arguments are separated by commas)

public static void namePerson()
IV.
Modifiers

A.
Access Modifiers (determines the availability of a method) most methods are public

B.
static modifier indicates that a method can be used anywhere in the class

C. void is the return type of methods that do not return any values

V.
Calls to methods

A.
A call to a method with no arguments consists of only the name of the method and a set of closed parenthesis followed by a semicolon.

B.
The basic purpose of the main method is to call other methods.

Lesson 12: Methods that require an Argument

Arguments

In the last few lessons we discussed methods that needed no information to perform their particular function. Some methods require more information. For example the sqrt(x) of the Math class requires a number to be passed to it so that it can find the square root of that number. When you write the method declaration for a method that can receive an argument, the following needs to be included:

1)
The data type of the argument

2)
A local name for the argument (called formal parameter)

A call to such a method requires the name of the method, a left parenthesis, a variable name that must be the same data type as the argument in the method declaration and a closing right parenthesis.

For example, a method called printMoney that received a dollar amount (double data type) and printed that amount to the screen, could be coded as the following:

public static void printMoney(double money)

{

 System.out.println(“The amount of money is “ + money);

}

The following code shows this method as part of a class called Money.

// Money class

public class Money

{

 public static void main(String[] args)

 {

 double dollarAmount;

 double dollarAmount2;

 dollarAmount = 56.78;

 dollarAmount2 = 89.43;

 printMoney(dollarAmount); // call to the printMoney method

 // dollarAmount is an actual parameter

 printMoney(dollarAmount2); // another call to printMoney method

 }

 public static void printMoney(double money)

 {

 System.out.println("The amount of money is " + money);

 }

}
The main method calls the printMoney method two times each with different values. This shows that a method can be used over and over again. In the main method both dollarAmount and dollarAmount2 serve as an argument (information) passed to the method printMoney. The argument in the call statement is called an actual parameter. The argument in the method declaration is called a formal parameter.

Comparison of the call to the method with the method declaration

Call

Method declaration

printMoney(dollarAmount);
 public static void printMoney(double money)
1.
The call does not have any words preceding the name (no modifiers) whereas the method may have modifiers and must have the method return value type (void in this case)

2.
The call must NOT give the data type before its actual parameter whereas the method declaration must give the data type of its formal parameter.

3.
The actual parameter dollarAmount passes its value to the formal parameter money.
More on parameters and methods with arguments is given in the next lesson.
Lesson 12 Summary Outline
I.
Arguments

A.
Formal Parameter----arguments in the method declaration

B.
Actual Parameter----arguments in the call to the method

II
Comparison of the call to the method with the method declaration

Call

Method declaration

printMoney(dollarAmount);
 public static void printMoney(double money)
1.
The call does not have any words preceding the name (no modifiers) whereas the method may have modifiers and must have the method return value type (void in this case)

2.
The call must NOT give the data type before its actual parameter whereas the method declaration must give the data type of its formal parameter.

3.
The actual parameter dollarAmount passes its value to the formal parameter money.
Lesson 13 Methods with Multiple Arguments
Methods that Require Multiple Arguments
Methods may have more than one argument. Multiple arguments are listed within the parenthesis of the call separated by commas. The header of a method also lists multiple arguments within its parenthesis. Each argument (formal parameter) of the header MUST be preceded by its data type. Even if all the arguments have the same data type, that data type must be listed separately for each argument.

Actual parameters (arguments in the call) and formal parameters (arguments in the method heading) are matched in a one-to-one correspondence.

Eample:
payCheck(payRate, hours); // call to a method

public static void payCheck(double rate, int time) // method heading
In the above example, there are two actual parameters (arguments): payRate and hours and two formal parameters: rate and time. The value of payRate (the first actual parameter) passes its value to rate (the first formal parameter). The value of hours (the second actual parameter) passes its value to time (the second formal parameter).

The actual parameters (payRate and hours) pass their values to their corresponding formal parameters. Whatever value is in payRate will be given to rate in the PayCheck method. This is called pass by value. It means that payRate and rate are two distinct memory locations. Whatever value is in payRate at the time of the call will be placed in the memory location called rate as its initial value. It should be noted that if method PayCheck were to alter the value of rate, it would not affect the value of payRate back in the calling method. In essence, pass by value is like making a copy of the value in payRate and placing it in rate. Whatever is done to that copy in rate has no effect on the value in payRate.

Although the formal parameters may have the same name as their corresponding actual parameters, they do not have to be the same and in fact your instructor strongly encourages different names. Corresponding (paired) parameters must have the same data type. In the above example payRate must have the double data type and hours must have the int data type.

Actual parameters can be literals.

payCheck(3.50, 8);

The above statement would be acceptable (although not normally used) since 3.50 can be stored in a double memory location and 8 is certainly an integer. Determine which of the following examples would be correct for our example.

payCheck(4,8); // This is ok since 4 would be implicitly converted to double

payCheck(4,8.5); // This is NOT ok since 8.5 is not converted to integer

It is very important that arguments passed to the method be passed in the correct order. Look at the following example:

findNetPay(grossPay, taxRate); // call to a method with two arguments

public static void findNetPay(double salary, double percent)

{

 double net;

 net = salary - (salary * percent);

 System.out.println(“The net pay is “ + net);

}

What would happen if the call had been

findNetPay(taxRate, grossPay);
Although it would not generate a syntax error (since they both are double data type) it would certainly produce incorrect data because taxRate would be paired with salary and grossPay with percent. The order of arguments is very important.

Keep in mind that an actual parameter is a separate and different memory location than its corresponding formal parameter. Even if they have the same name they are not the same location and they would not be active (available) at the same time. Look at the following program.

import java.util.Scanner;

public class CostTax

{

 public static void main(String[] args)

 {

Scanner kbd=new Scanner(System.in);

System.out.print("Please input the cost of the item ");

double cost=kbd.nextDouble();

System.out.print("Please input the sales tax rate ");

double salesTax=kbd.nextDouble();

findTax(cost,salesTax);

System.out.printf("The value of cost is $%.2f ",cost);

kbd.close();

 }

 public static void findTax(double price, double rate)

 {

 price=price+price * rate;

 System.out.printf("The total cost is $%.2f\n",price);

 }

}

Sample run:

Please input the cost of the item 10

Please input the sales tax rate .06
The total cost is $10.60

The value of cost is $10.00
Strings

Lesson 4 discussed four primitive data types: floating point, integer, character and boolean. Character data can store only one character in its memory location, which is not very useful for storing names.
There is a class called String that allows many characters to be stored in one location. String is not a true data type, but rather a class. Nevertheless it can be used as a type for storing more than one character in a memory location. For now we can “pretend” that it is a data type for declaring variables that can contain multiple characters. Since it is a class it begins with an upper case letter.
String firstName;

The above statement allows the variable (which is actually an object, but more on that later) firstName to contain multiple characters.

Lesson 13 Summary Outline
I.
Methods with Multiple arguments

A.
Multiple arguments are listed within the parenthesis of the call separated by commas

B.
Each argument (formal parameter) of the header MUST be preceded by its data type.

C.
Actual parameters (arguments in the call) and formal parameters (arguments in the method heading) are matched in a one-to-one correspondence.

D.
The values of the actual arguments are passed to the corresponding formal parameters. This is called pass by value.

E.
Actual parameters can be literals or variables. Usually they are variables.

F.
Arguments sent to a method must match in both number and type the parameters listed in the method declaration.
II
Strings

A.
 A class called String allows many characters to be stored in one location

B.
String is NOT a true data type, but for now can be thought of as one
Lesson 14 Functions

Methods that Return a Value
Functions

A function is similar to a method however its purpose is to determine one and only one value and that value is passed back to the place that called the function. Since a function replaces the area from which it was called with a value, a function is not a fundamental instruction. It has to be called from within an instruction.

It must have a return statement.

The return type for a method can be any type used in Java. This includes the primitive (scalar) types discussed in Lesson 4 as well as class types (which will be discussed later). All the methods we have discussed so far had the void return type which means that the method returned nothing.
A method’s return type is known as it’s method’s type. So it is proper to speak of methods with type, char, boolean, double, int, void, etc. Look at the following class. It should be noted that the instructor prefers to call void methods methods and all others functions.

Example 14.1 Function called from an assignment statement

public class Cube

{

 public static void main(String[]args)

 {

 int x = 2;

 int cube;

 cube = cubeIt(x); // The call to the cubeIt method

 System.out.println(“The cube of “ + x + “ is “ + cube);

 }

 public static int cubeIt(int x) // Notice the method type is int rather than void

 {

 int num;

 num = Math.pow(x,3);

 return num;

 }
}

The Method cubeIt receives the value of x, which in this case is 2, and finds its cube which it places in a local variable num. It then returns the value stored in num to the call cubeIt(x). The value 8 replaces the entire call and is assigned to cube, i.e. cube = cubeIt(x) is replaced with cube = 8.

Value returning functions replace the word void with the data type of the value that is returned.

Example 14.2 function called from a print statement

public class Cube

{

 public static void main(String[]args)

 {

 int x = 2;

 System.out.println(“The cube of “ + x + “ is “ + cubeIt(x));

 }

 public static int cubeIt(int x) // Notice the method type is int rather than void

 {

 return Math.pow(x,3);

 }
}

Example program 14.3

public class Pay

{
 public static void main(String[] args)

 {

 int hoursWorked = 20;

 float payRate = 5.00;

 float payNet;

 payNet = findNetPay(hoursWorked,payRate);

 System.out.println(" The net pay is $" + payNet);

 }

 public static float findNetPay(int hours, double rate)

 {

 float net;

 net = hours * rate;

 return net;

 }

}

Notice how this method is called, payNet = Netpay(hoursWorked,payRate);.

The call to this method is not a stand alone statement, but rather part of an assignment statement. The call is used in an expression. In fact, the method will return a double value (net) that replaces the entire right hand side of the assignment statement. This is a major difference between void returning methods and the other methods. A void method is called by just listing the name of the method along with its arguments. A value returning method is called within a portion of some instruction (the right hand side of an assignment statement, condition of a selection or loop statement or argument of an output statement. Another difference is the fact that a value returning method MUST have a return statement. It is usually the very last instruction of the method. The method findNetPay could have had just the return instruction, return hours * rate;. This would have returned the value found by multiplying hours and rate to the calling method.
Lesson 14 Summary Outline
I.
Return Types

A.
The return type for a method can be any type used in Java.

B.
A method’s return type is known as a method’s type

C.
Value returning functions replace the word void with the data type of the value that is returned.

II
Value Returning Methods

A.
A value returning method is called within a portion of some instruction

B.
A value returning method MUST have a return statement.

Example:

 cube = cubeIt(x); // The call to the cubeIt method

 public static int cubeIt(int x) // Method heading

 {

 return Math.pow(x,3); // Method body consisting of just the return

 }

Lesson 15: Review of Methods and Functions
/**

 * This program demonstrates the difference between methods and functions
 * It figures netpay after a deduction of taxes. It shows this twice
 * once by calling a method and once by calling a function
 *
 */
import java.util.Scanner;

public class Wages

{

public static void main (String[] args)

{

Scanner kbd = new Scanner(System.in);

double hours;

double payRate;

double grossPay;

 double netPay;

double fedTax;

 double stateTax;

System.out.println("Please input hours worked: ");

hours = kbd.nextDouble();

System.out.println("Please input the hourly pay rate");

payRate = kbd.nextDouble();

 System.out.println("Please input the Fed tax as a decimal:");

 System.out.println(" Example 20% will be input as .20");

 fedTax = kbd.nextDouble();

 System.out.println("Please input the State tax as a decimal:");

 stateTax = kbd.nextDouble();

 grossPay = hours * payRate;

 // We first solve this problem using functions
 // notice that it is called from inside an instruction in this case assignment

 netPay=calNetFunction(grossPay, fedTax, stateTax);

 System.out.println("The hours worked is " + hours);

 System.out.printf("The pay per hour is $%.2f" , payRate);

 System.out.printf("The gross pay is $%.2f \n" ,grossPay);

 System.out.printf("The net pay is $%.2f\n" , netPay);

 System.out.println("That is how we solved it using a function");

 // We now solve this using a method.
 // Since a method does not return anything it will print the values of grossPay
 // and netPay But NOT hours and payRate Why? Those values are not passed to it

 calNetMethod(grossPay, fedTax, stateTax);

 System.out.println("That is how we solved it using a method");

 kbd.close();

}

 public static double calNetFunction(double income, double federal, double state)

 {

double takeHomePay;

takeHomePay= income - (income * federal) - (income * state);

return takeHomePay;

 }

 public static void calNetMethod(double salary,double fedGovTax, double stGovTax)

 {

double netMoney = salary -(salary*fedGovTax)-(salary*stGovTax);

System.out.printf("The gross salary is $%.2f \n" ,salary);

 System.out.printf("The net income is $%.2f\n" , netMoney);

 }

}
Method

Function

 How they are called

 calNetMethod(grossPay, fedTax, stateTax); | netPay=calNetFunction(grossPay, fedTax, stateTax);
 A fundamental instruction Called from inside another instruction

How they are defined

Method Word void

public static void calNetMethod(double salary,double fedGovTax, double stGovTax)

{

 It performs actions but does not return anything.

}

Function Data Type of returned value

public static double calNetFunction(double income, double federal, double state)

 {

double takeHomePay;

takeHomePay= income - (income * federal) - (income * state);

return takeHomePay;

 }

 Must have a return value

Lesson 16: The switch Statement
The switch Statement
We have already seen how if statements can affect the branching of a program during execution. Another way to do this is using the switch statement. It is also a conditional statement. The switch statement uses the exact value of an integer or character expression to determine which group of statements to branch through. The sample program below illustrates the syntax. Note that after ever case we have a break statement. This gets us out of the switch statement. The switch statements has an opening { and closing } after the cases. The default value is the value taken if none of the other case statements are chosen.

Sample Program 16.1
import java.util.Scanner;

public class GradeMessage

{

 public static void main(String[] args){

 Scanner kbd=new Scanner(System.in);

 int grade;

 System.out.println("What grade did you earn in Programming I ?");

 System.out.println("Input 4 for A");

 System.out.println("Input 3 for B");

 System.out.println("Input 2 for C");

 System.out.println("Input 1 for D");

 System.out.println("Input 0 for F");

 grade = kbd.nextInt();

 switch(grade) // This is where the switch statement begins

 {

 case 4: System.out.println("an A - excellent work !");

 break;

 case 3: System.out.println("you got a B - good job");

 break;

 case 2: System.out.println("earning a C is satisfactory");

 break;

 case 1: System.out.println("while D is passing, there is a problem");

 break;

 case 0: System.out.println("you failed - better luck next time");

 break;

 default: System.out.println("You did not enter a 4, 3, 2, 1, or 0");

 }

 kbd.close();

 }

}

Note the use of the curly braces that enclose the cases. Also, consider the variable grade. It is declared as a integer data type and the case statements have character arguments such as 4. Finally, notice the role of the default statement. The default branch is followed if none of the case expressions match the given switch expression.
Here is the same program done with character data. NOTE: Only integers and char data can be used as determinants in a switch statement. We read the character as a String the next() statement. We then convert it to a character through the String function charAt(0) Where 0 is the first letter of the string. Notice we check for both upper and lower case. We do that my not putting a break after the first case of a letter (upper case in the example).

Sample Program 16.2
import java.util.Scanner;

public class GradeMessage

{

 public static void main(String[] args){

 Scanner kbd=new Scanner(System.in);

 char letter;

 String grade;

 System.out.println("What grade did you earn in Programming I: Input a single character A,B,C,D, or F ?");

 grade=kbd.next();

 letter = grade.charAt(0);

 switch(letter) // This is where the switch statement begins
 {

 case 'A':

 case 'a': System.out.println("An A - excellent work !");

 break;

 case 'B':

 case 'b': System.out.println("You got a B - good job");

 break;

 case 'C':

 case 'c': System.out.println("Warning a C is satisfactory");

 break;

 case 'D':

 case 'd': System.out.println("While D is passing, there is a problem");

 break;

 case 'F':

 case 'f': System.out.println("You failed - better luck next time");

 break;

 default: System.out.println("You did not enter an A, B, C, D,or F");

 }

 kbd.close();

 }

}
Lesson 16 Summary

switch Statement

 switch(grade) // This is where the switch statement begins

 {

 case 4: System.out.println("an A - excellent work !");

 break;

 case 3: System.out.println("you got a B - good job");

 break;

 case 2: System.out.println("earning a C is satisfactory");

 break;

 case 1: System.out.println("while D is passing, there is a problem");

 break;

 case 0: System.out.println("you failed - better luck next time");

 break;

default: System.out.println("You did not enter a 4, 3, 2, 1, or 0");

 }
Review of Precedence

Precedence

Multiplication, division

* / %

Addition, subtraction

+ -

Relational

> < >= <=

Equality

== !=

Logical AND

&&

Logical OR

||

Assignment

=

Lesson 17: do while Loop
The do-while Loop
The while loop is a pre test or top test loop. Since we test the expression before entering the loop, if the test expression in the while loop is initially false, then no iterations of the loop will be executed. If the programmer wants the loop to be executed at least once, then a post test loop or bottom loop should be used. Java provides the do-while loop for this purpose. A do-while loop is similar to a while loop except that the statements inside the loop body are executed before the expression is tested. The format for a single statement in the loop body is the following:

do

 {

 Statement(s)

}

while (Condition);

The big difference between the do and while loop is that the do loop condition is evaluated after the statements in the loop are executed. That means that the loop will always be processed at least once!

Thus the do loop is used when the statements must be repeated at least once.

The do while loop is not usually used when you have sentinel data, but is used when a condition (other than sentinel) is used to stop the loop.

Example If we wanted to ask user if they wanted to do something again and they would respond with a yes answer we could use a do while loop. Example: if we wanted to read in grades and then average them and we know that there will be at least one grade read in, we could use a do while loop

import java.util.Scanner;

public class DOWhile {

/* Sample of do while

 */

public static void main(String[] args) {

double grade=0, average, totalGrades=0;

int numOfGrade=0;

char answer;

Scanner keyboard=new Scanner(System.in);

do{

System.out.println("Please input a grade");

grade=keyboard.nextDouble();

totalGrades= totalGrades +grade;

numOfGrade++;

System.out.println("Would you like to input another grade?");

answer=keyboard.next().charAt(0);

 // we get a string but reduce it to one character

 // charAt(0) gets the first character of the string

}while (answer =='y'|| answer =='Y');

 // this makes it not case sensitive

average=totalGrades/numOfGrade;

 System.out.println("the average grade is "+ average);

keyboard.close();

}

}

Notice that there is no need to prime a read!

Notice that the while in the do while does have a ; after it. The reason being that it ends the statement. Never put a ; after a while in the while instruction but do put a ; after the while in a do while.
Lesson 17 Summary

I.
The do / while Loop

A.
The while loop is a pre test or top test loop. Since we test the expression before entering the loop, if the test expression in the while loop is initially false, then no iterations of the loop will be executed.

B.
do-while loop is a post test or bottom test loop. A do-while loop is similar to a while loop except that the statements inside the loop body are executed before the expression is tested.

do

{

statement;

 Statement;

}

 while (condition);
Notice that the while portion of a do while has a ; after the condition.

The while of a while loop NEVER has a ; after the expression.

while (condition)

{

}

Lesson 18: The for Loop
The for Loop
 In addition to the while and do while loop, Java also supplies a for loop that is a counter controlled loop.

The while and do while are called conditional loops because they base their termination upon the arrival of some condition. The for loop is a counter controlled loop because it executes the loop a certain number of times.

The format for the Java for loop is:

for (int count =start; count<= finish; count++) {

}

In parenthesis we have three parts (separated by a ;).

The first part is the initial value that we assign to count. (it is an assignment statement that also serves as declaring the value of count as an integer). It is followed by a ;

The second part is the condition of termination. As long as count <= finish is true we will continue. When count is > than finish then the loop will exit. Both start and finish can be any value. They can be a variable that has a value or a literal number.

The third part changes the value of count. Note: count could be any variable, but it must be changed or else the loop would never end. In this case, count is incremented by one each time through the loop so eventually it will become larger than the value in finish. Note: count++ is a shortcut for count=count+1;

A for loop is used when the program knows the number of times the loop will be executed. It uses a variable to hold the count (the number of times the loop is executed).

Count could be set at any number and the condition could be anything and count could be incremented by more than one, or it could even be decremented!!! The programmer must make sure that whatever condition he or she gives, the loop will eventually end.

for (int count=1; count <=3; count++)

{

 System.out.println(“HI);

}

for (int count=2; count <=10; count=count +2)

{

System.out.println(count);

}

for (int count=10; count >=1; count=count -1)

{

System.out.println(count);

}

Suppose the user at the keyboard wants to input a certain number of temperatures and have the computer determine the average temperature. We can develop a program that asks the user how many temperatures there are and then we can develop a for loop that will loop that many times asking for the temperature.

Look at the following code
import java.util.Scanner;

public class TempAvg {

/** This program reads in a certain number of temperatures.

 * The amount of temperatures is read first and then the program

 * reads the temperatures in a for loop and calculates the

 * average temperature.

 * Programmer: Your Name

 *

 */

public static void main(String[] args) {

Scanner keyboard=new Scanner(System.in);

System.out.println("PLease input the number of temperatures ");

int numberOfTemp=keyboard.nextInt();

double totalTemperatures =0;

double temperature;

for (int count =1; count <= numberOfTemp; count++) {

System.out.println("PLease input a temperature ");

temperature = keyboard.nextDouble();

totalTemperatures +=temperature;

}

System.out.printf("The average temperature is %.2f",

 totalTemperatures/numberOfTemp);

keyboard.close();

}

}

Note: cout++ is a Java shortcut for cout=cout+1;

 totalTemperatures += temperature; is a Java shortcut for

 totalTemperatures=totalTemperatures + temperature;

Sample run:

PLease input the number of temperatures

4
PLease input a temperature

79
PLease input a temperature

52
PLease input a temperature

84
PLease input a temperature

37
The average temperature is 63.00

The for loop is often used for applications that require a counter. For example, suppose we want to find the average (mean) of the first n positive integers. By definition, this means that we need to add 1 + 2 + 3 + þ + n and then divide by n. Since we know exactly how many times we are performing a sum, the for loop is the natural choice.

Sample Program 18.1:

import java.util.Scanner;

public class SumIt

{

 public static void main(String[] args)

{

int value;

int total = 0;

int number;

double mean;

Scanner kbd=new Scanner(System.in);

System.out.println("Please enter a positive integer");

value = kbd.nextInt();

if (value > 0)

{

 for (number = 1; number <= value; number++)

 {

 total = total + number;

 } // curly braces are optional since there is only one statement

 mean = (double)total / value; // note the use of the typecast operator

 System.out.println("The mean average of the first " + value + " positive integers is " + mean);

 } // end of if

 else

 System.out.println("Invalid input - integer must be positive");

kbd.close();

 } // end of main

} // end of class

Note that the counter in the for loop of Sample Program 18.1 is number. It increments from 1 to value during execution. There are several other features of this code that also need to be addressed. First of all, why is the typecast operator needed to compute the mean? What do you think will happen if it is removed? Finally, what would happen if we entered a float such as 2.99 instead of an integer?

Nested Loops
Often programmers need to use a loop within a loop or nested loops. Sample Program 18.2 below provides a simple example of a nested loop. This program finds the average number of hours per day spent programming by each student over a three day weekend. The outer loop controls the number of students and the inner loop allows the user to enter the number of hours worked each of the three days for a given student. Note that the inner loop is executed three times for each iteration of the outer loop.

Sample Program 18.2:

// This program finds the average time spent programming by a student each

// day over a three day period.

import java.util.Scanner;

public class AverageHours

{

 public static void main(String[] args)

{

Scanner kbd=new Scanner(System.in);

int numStudents;

double numHours, total, average;

int count1, count2; // these are the counters for the loops

System.out.print("This program will find the average number of hours ");

System.out.print("a day that each given student spent programming ");

System.out.println("over a long weekend\r\r");

System.out.println("How many students are there ?");

numStudents = kbd.nextInt();

 for (count1 = 1; count1 <= numStudents; count1++)

{

total = 0;

for (count2 = 1; count2 <= 3; count2++)

{

 System.out.print("Please enter the number of hours worked ");

 System.out.print("by student " + count1 + " on day " + count2 + " ");

 numHours = kbd.nextDouble();

 total = total + numHours;

}

 average = total / 3;

System.out.print("The average number of hours per day spent ");

System.out.print("programming by student " + count1);

System.out.printf(" is %.2f \n\n", average);

}

kbd.close();

 }

}

Trace

count1 count 2 numStudents numHours total average

 2

1

 0

 1

 2 2

2

 3

5

3

 1 6

 2

The average number of hours per day spent programming by student 1 is 2

2

 0

1

 5

5

2

 2.5

7.5

3

 3.5

11

3.67

Lesson 18 Summary
for Loops

A.
The for loop is often used for applications that require a counter.

 for (initialization; test; update)

 {

 statement_1;

 statement_2;

 !
 statement_n;

 }

B.
 Often programmers need to use a loop within a loop or nested loops
 for (count1 = 1; count1 <= numStudents; count1++)

 {

total = 0;

for (count2 = 1; count2 <= 3; count2++)

{

 System.out.print("Please enter the number of hours worked “);

 System.out.print(“by student " + count1 + " on day " + count2);

 numHours = Keyboard.readDouble();

 total = total + numHours;

}

average = total / 3;

System.out.print("The average number of hours per day spent “);

System.out.print(“programming by student " + count1);

System.out.println(" is " + average + “\r\r\r”);

}
Lesson 19: Introduction to Classes and OOP
Using Classes

As stated in Lesson 2, classes are the definitions from which objects are created. In Object Oriented Programming everything is thought of as an object and every object is a member of some class. Both data items and events are objects. Events such as the inauguration of the President, or the determination of a grade can be thought of as an object. Objects are the realization of a class design. An object in OOP terminology is an instantiation of a class. That means that it is a “physical” component of some intangible design. A house is an object of the blueprint used to build the house.

An object is an instance of a class.

The class concept is useful because it can be reused over and over again. Once a class is designed, its details can be used to create objects in many types of programs. An object built from a class, inherits the attributes from the class. What are attributes of a class? They are defined by what makes a class a class. For example, a dog class immediately brings to your mind attributes that a dog may have. A dog class may include a name, a breed, a color, a weight and a length. Seeing a dog you assume the animal has a name given by the owner, a breed, a color, a weight and a length. You may not know all the particular attributes of that dog, but you assume that they exist. Since objects are members of classes they have predictable attributes. These attributes are contained in what is called instance variables. We have been using variables throughout the course; however our variables were used to solve some particular problem and were not really members of a class. An instance variable is defined within the class to be used as an attribute of that class. We discuss this in greater detail later. In addition to its attributes, you also assume that the dog performs certain actions such as barking, eating, etc. These actions are treated as methods in a class. Every object that is an instance of a class is assumed to possess the methods of that class. Methods are often designed to give particular attributes to an object. For example, a Dog class might have methods such as setName(), setBreed(), setColor(), setWeight() and setLength(). These methods would be used by an object of the Dog class to give particular attributes about that particular dog represented by the object. Methods could also be used to return information about an object. A method called pureBreed() would be a Boolean type. It would return true or false based on the particular dog(object). Methods could also return values of a particular attribute. The method findWeight() would return the weight of a particular dog(object).

Class Creation
Object-oriented programming first creates classes from which objects will be instantiated (created). It then creates other classes to use the objects and the data and methods associated with it. So far we have been doing the later. We have not yet created classes from which objects were instantiated. We have created classes and methods that have been used to perform a certain action on variables of primitive types. In essence we have done procedural programming in an object-oriented frame. But that will now change. We are going to learn to create classes and instantiate objects from them, as well as develop other methods to use those objects. A class or program that instantiates objects of other pre-written classes is called a class user or class client.

Example:

public class Dog()

{

//Attributes: instance variables

 private var name;

private var color:

private var breed;

 private var weight;

// Methods

setName(String title);

{

 name=title

}

setWeight(double pounds)

{

 weight=pounds;

}

getName()

{

 return name;

}

getWeight()

{

 return weight;

}

Then in a program we could have something like this:

Dog.setWeight(40);

Dog.setName(“anchovy”);

Class Creation

In creating a class you must have the following:

1)
a name

2)
data

The data consists of instance variables

3)
methods

Methods describe the actions of the class

A class named Student may have a student id number. An instance variable of this class might be idNumber. We might have two methods: one to provide an id number setId() and one that will retrieve an id number getId().

Class Header
A class header has the following three components:

1)
An optional access modifier

2)
The word class

3)
The name of the class

public class Student

Most class access modifiers are public.

A class can have either no modifier or public modifier.

Public classes are accessible by all objects and can be extended to be used by other classes. In the future you could develop a another class called HonorStudent that inherits the attributes and methods of the Student class. We say more about modifiers later.

Instance Variables (fields)
Instance variables (and instance methods discussed later) are placed within the body of the class. The body is located between the curly brackets.

Instance variables consist of the following:

1)
optional access modifier

2)
data type

3)
name (following the guidelines for naming variables)

In declaring variables up to this point we have not used any modifiers because we have not created instance variables. Keep in mind that instance variables are different than variables used to solve a particular problem. Instance variables are defined in the class and make up the attributes of that class.

Although instance variables do not have to have modifiers, most programmers will use the private access modifier.
 Private access means that no other classes can access the values stored in the instance variables. Only methods defined within the class are allowed to set, retrieve or use these values. Private access lends itself to something called information hiding. Most class methods (as we shall see) have public access which allows their use “outside” of the class. The methods become the interface between a class user and the class itself. The internal workings of a method and how it manipulates the data in the instance variables can change without affecting how the method is used. In other words, the mechanism of how something is accomplished in hidden from the user in much the same way as the internal workings of a remote controller is hidden from the person using it to change a channel.

public class Student // Class header

{

 private long idNumber; // Instance Variable idNumber

}

Instance variables are sometimes referred to as fields or member data.

Instance Methods

As already noted, classes contain methods. The methods that we discuss in this section are different than the methods we have been using thus far in the course. So far we have used what is known as classwide methods and they all contained the static modifier. When creating a program with a main() method that will call other methods to perform some task, the word static will be used in those other methods so that they can be called from within main(). Recall from Lesson 6 that the static modifier allows data or methods to be used anywhere within the class. The static modifier is generally not used for methods declared as part of the class since they are used by objects created from that class. The formal definition of static and how it works is beyond the scope of this lesson.

When creating a class from which objects will be instantiated, most of the methods will be non-static. These methods will be associated with individual objects and thus have access when they are called through an object (discussed later). Such methods are called instance methods. They are generally still given public access but not static.

We now extend are sample Student class to include two instance methods.

public class Student // Class header

{

 private long idNumber;
 // Instance Variable idNumber

 public long getIdNumber()

 // Instance Method of type long

 {

// This method returns the value of the

 return idNumber;

// private instance variable idNumber

 }

 public void setIdNumber(long id)

// Instance method of type void

 {

// This method receives the value of an

 // id number through its formal parameter

idNumber = id;

 // id and sets that value to the private

 // instance variable idNumber

 }

}

Java Modifiers

I.
Class level access modifiers (Java classes only)
Only two possibilities

1.
public The class can be accessed from anyplace
 public class Student

2.
no modifier Class can only be accessed only from the same package
class Student

II. Member level access modifiers (Java variables and Java methods)

Four possibilities
 1.

public-- the variable or method can be accessed from anyplace
2.
no modifier --the variable/method can be accessed only from the same package

 3.
private -- only members of the class can access it.

4.
protected --can be accessed from the same package and a subclass existing in any package can access it.
 For better understanding, member level access is formulated as a table:

 Access Modifiers
Same Class
Same Package
Subcl Sub-Class
Other packages

 public
Y
Y
Y
Y

 protected
Y
Y
Y
N

 no access modifier
Y
Y
N
N

 private
Y
N
N
N

First row {public Y Y Y Y} should be interpreted as:

Y – A member declared with ‘public’ access modifier CAN be accessed by the members of the ‘same class’.

Y – A member declared with ‘public’ access modifier CAN be accessed by the members of the ‘same package’.

Y – A member declared with ‘public’ access modifier CAN be accessed by the members of the ‘subclass’.

Y – A member declared as ‘public’ CAN be accessed from ‘Other packages’.

Second row {protected Y Y Y N} should be interpreted as:

Y – A member declared with ‘protected’ access modifier CAN be accessed by the members of the ‘same class’.

Y – A member declared with ‘protected’ access modifier CAN be accessed by the members of the ‘same package’.

Y – A member declared with ‘protected’ access modifier CAN be accessed by the members of the ‘subclass’.

N – A member declared with ‘protected’ access modifier CANNOT be accessed by the members of the ‘Other package’.

Lesson 19 Summary Outline
I.
Class contents

A.
a name

B.
data

The data consists of instance variables

C.
methods

Methods describe the actions of the class

II
Class Header
A.
An optional access modifier

B.
The word class

C.
The name of the class

III.
Instance Variables (Data fields associated with a class)

A.
optional access modifier (Usually private)

B.
data type

C.
name (following the guidelines for naming variables)

IV
Instance Methods (methods associated with the behavior of a class)
Sample:

public class Student // Class header

{

 private long idNumber;

// Instance Variable idNumber

 public long getIdNumber()

 // Instance Method of type long

 {

// This method returns the value of the

 return idNumber;

// private instance variable idNumber

 }

 public void setIdNumber(long id)
// Instance method of type void

 {

// This method receives the value of an

 // id number through its formal parameter

idNumber = id;

 // id and sets that value to the private

 // instance variable idNumber

 }

}

Lesson 20: Declaring and Instantiating Objects
Declaring Objects

As noted earlier, declaring a class does not create objects. A class is just a description, a blueprint (a mold) of what an object will be. Objects have to be instantiated (brought into existence). In previous lessons when we declared variables with primitive data types, we listed a data type and the name of the variable. This one act did two things: 1) it communicated to the compiler that we were using a variable with a certain data type and name and 2) the compiler reserved memory space for that variable. The amount of memory reserved depended on the data type. Instantiation of objects, however, requires two steps. First, you must supply a type and an identifier, just like you did when declaring any variable. Second, you must specifically allocate computer memory for that object, for this is Not done automatically for you. This allocation is done by the new operator.
The following example demonstrates the process of instantiating an object of the Student class.

Student aStudent; // Supplying the information: Class and object name

aStudent = new Student(); // The new operation allocates memory for the // object aStudent from Student class
The two statements could be combined into one.

Student aStudent = new Student();
The assignment operator (=) is used to assign a memory address to the aStudent object. The programmer does not have to worry what that value is for the compiler locates aStudent at the correct location.

Constructor
The statement Student() looks like a method name. In fact it is a special type of method called a constructor method. The name of a constructor method is ALWAYS the same name as the class in which it is defined. A constructor is a method that is IMPLICITLY invoked whenever a class instance is created (whenever an object is declared and has memory allocated to it). Later you will write your own constructors; however, when you don’t write a constructor Java writes one for you.

Accessing methods

Once an object has been instantiated, its methods are accessed by the following method:

object name.method call

The setIdNumber method of the Student class (defined in the last lesson) is called by aStudent object as follows.

aStudent.setIdNumber(345);
object method actual parameter

Look at the following expansion of the class Student.

public class Student // Class header

{

 private long idNumber;
 // Instance Variable idNumber

 private String lastName;

// Instance Variable lastName

 private String firstName;

// Instance Variable firstName

 private char grade;

// Instance Variable grade

 public long getIdNumber()

 // Instance Method of type long

 {

// This method returns the value of the

 return idNumber;

 // private instance variable idNumber

 }

 public String getLastName()
// Instance Method of type string

 {

// This method returns the value of the

return lastName;

// private instance variable lastName;

 }

 public String getFirstName()
// Instance Method of type string

 {

// This method returns the value of the

return firstName;

// private instance variable firstName

 }

 public char getGrade()

// Instance Method of type char

 {

// This method returns the value of the

return grade;

// private instance variable grade

 }

 public void setIdNumber(long id) // Instance method of type void

 {

 // This method receives the value of an

 // id number through its formal parameter

idNumber = id;

 // id and sets that value to the private

 // instance variable idNumber

 }

 public void setFirstName(String first) // Instance method of type void

 {

 // This method receives the value

 firstName = first;

 // of first through its formal

 }

 // parameter and sets that value

 // to the data field firstName

 public void setLastName(String last)
// Instance method of type void

 {

 // This method receives the value

 lastName = last;

 // of last through its formal

 }

 // parameter and sets that value

 // to the data field lastName

 public void setGrade(char letter)
 // Instance method of type void

 {

 // This method receives the value of letter through its

 grade = letter;

// formal parameter and sets that value to grade

 }

public static void main(String[] args)

 {

 Student aStudent = new Student();
 // This instantiates an object

 long number;

 aStudent.setIdNumber(345);

// call to a class method

 //object.method actual parameter

 System.out.print("The Student Id number is ");

 System.out.println(aStudent.getIdNumber()); // call of a value returning

 // class method

 }

}

Extension of this program (call other methods) is left as a lab exercise

Class Organization

There are no set requirements for organizing a class; however there are certain generally accepted standards. Most programmers place the data fields at the beginning of a class with the primary key first. A primary key is a data field that gives a unique identifier for the object. For example, idNumber is the data field (instance variable) that uniquely identifies a student. Many students may have the same last or first name, however only one will have a particular id number. Social security numbers, account numbers etc. are all good primary key fields.

Some programmers will store methods in alphabetical order or by order of function (what they do). The Student class has methods listed by function.
Lesson 20 Summary
I.
Declaring Objects

A.
Supply a type and an identifier

B.
Specifically allocate computer memory for that object This allocation is done by the new operator.

Student aStudent = new Student();

C.
 A constructor is a method that is IMPLICITLY invoked whenever a class instance is created
II
Accessing Method

A.
aStudent.setIdNumber(345);
 object method actual parameter

III.
Class Organization

A.
A primary key is a data field that gives a unique identifier for the object.

B.
Data fields are often given at the beginning of a class with a primary key first.

C.
Methods are given in alphabetical order or logical order.
Lesson 21: Constructors
Using Constructors

As noted in Lesson 19, when an object is instantiated a call is actually made to a special type of method called a constructor.

Student aStudent = new Student();
A constructor method is a method that establishes an object. The constructor method Student() creates an object (in this case called aStudent). The default constructors (constructors provided by Java and not developed by the user) sets fields to the following default values:

Numeric data fields are set to 0.

Character fields are set to the Unicode value of ‘\u0000'

Boolean fields are set to false

Object type fields (discussed later) are set to null

If you do not want these default values, or want additional tasks to be performed upon the creation of an object you will have to create your own.

A constructor is a method that is developed much like all other methods except for the following:

1)
A constructor has the same name as the class itself

2)
Constructor do NOT have a return type.

If you wanted the grade of a student to be an ‘A’ whenever an object of Class student is created, you can create the following constructor method.

Student() // Constructor has same name as its class No return value

{

 grade = ‘A’;

 // This sets grade to A

}

If the constructor above was included in the class then the instantiation of the following would set grade to ‘A’ automatically.

Student aStudent = new Student();

Lesson 21 Summary
I.
Constructors

A.
A constructor is a method like most methods except

1.
Its name is the same as the class

2.
It does not have a return value

B.
Default Constructor (provided by Java)

1.
Numeric data fields are set to 0.

2.
Character fields are set to the Unicode value of ‘\u0000'

3.
Boolean fields are set to false

4.
Object type fields (discussed later) are set to null
II
Example

Student() // Constructor has same name as its class No return value

{

 grade = ‘A’;

 // This sets grade to A

}

Lesson 22: User Input

Streams

Data flowing in or out of a Java program are called a stream. The System class used for the System.out.println()statement has many streams including System.in which actually refers to a buffered input stream. A buffer is a data area shared by programs or hardware where data are held until needed by the processor. Java contains a reader called the InputStreamReader (ISR) that reads from the buffer. The ISR is a Java class that acts as an intermediary between the input buffer and the program. The word wrap refers to how the ISR encompasses the stream from the input buffer. The java code to accomplish this is InputStreamReader(System.in). Just like objects the ISR must have a storage location declared and identified before it can be instantiated (used). Complex data types (types other than the primitive ones) must be created by the programmer or instantiated from a Java class. The class BufferedReader is the class from which buffers are created. In instantiating input, the BufferedReader is the class. Study the following code very carefully.

BufferedReader dataIn = new BufferedReader(new InputStreamReader(System.in));

BufferedReader is dataIn

BufferedReader
 Buffer
Reader

Data from

the class is the instance constructor

keyboard

dataIn readLine methodString data object

System.in Buffer
This BufferedReader class is not automatically brought into the program. We use an import statement to bring in a package of classes. A package is a collection of related classes. In this case we need to import the io package. import java.io.*;
The import statement is given before the first non-comment line. It will bring to our program all the classes in the io package of java. The * is a wildcard symbol that includes all the classes.
Users must have a prompt to tell them what to input. Using the readLine method from the BufferedReader class, data will be moved from the dataIn location to a location with a string variable. A string of data is fine for a person’s name, but you can’t perform arithmetic operations. Data must thus be converted from string to numeric data types through a parse method.
 quantity = Integer.parseInt(strQuantity);
The above statement assigns an integer value to quantity from a string variable (strQuantity) which was read from the keyboard as a string input stream.
cost = Double.parseDouble(strCost);
The above statement assigns a double value to cost from a string variable (strCost) which was read from the keyboard as a string input stream.
When using the readLine method, Java must be warned that the possibility of errors exist. A program can not depend on a user to input proper data. For example a particular system might be busy with other input. These situations are called exceptions because they don’t often happen. The words throws IOException appended at the end of the main method header passes the error to the Operating System. Whenever you use keyboard input you will include this statement at the end of the main method. More experienced Java programmers handle exceptions by writing their own code.
Study the following program very carefully. It brings input from the keyboard as a string and then converts non string data to the proper numeric data type by using the appropriate parse method.
The program does not handle specific runtime exceptions (errors that will occur after compile time when the program is running), but should run properly if user inputs reasonable data.
// Input from keyboard example

// This program will take a product name, cost and quantity on hand

// from the keyboard and print this to the screen.

import java.io.*; // imports the IO classes needed

public class StringInput

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader dataIn =

 new BufferedReader(new InputStreamReader(System.in));

 // Declaring variables

 String itemName;
 // name of product

 double cost;
// cost of the item

 int quantity;

// number of items on hand

 String strCost;
 // cost of item read in as a string

 String strQuantity;
 // number of items read in as a string

 // Get input from user

 System.out.println("Input item name");
 // prompt

 itemName = dataIn.readLine();
 // reads in item as a string

 System.out.println("What is the cost of this item?");
 // prompt

 strCost = dataIn. readLine();

 // reads in cost as a string

 System.out.println("How many of these items do you have?");
// prompt

 strQuantity = dataIn. readLine();

 // reads in quantity as a string

 cost = Double.parseDouble(strCost);

// Converts the string strCost to a double

 quantity = Integer.parseInt(strQuantity);

// Converts the stringstr Quantity to an integer

 // Output the values to the screen

 System.out.println("The item is " + itemName);

 System.out.println("The cost is " + cost);

 System.out.println("The number on hand is " + quantity);

 }

}

Lesson 22 Summary
I.
Keyboard Input

A.
Interactive programs receive data from the user (usually through the keyboard)

B.
Streams- data flowing in or out of a program

C.
buffer- data area shared by programs or hardware

D.
package - a group of related classes

II
InputStreamReader- serves as an intermediary between the input buffer and the Java program.

A.
BufferedReader - class from the java.io package

B.
System.in – indication to read from keyboard

C.
 readLine method from the BufferedReader class

III.
 parse method.

A.
 quantity = Integer.parseInt(strQuantity);
The above statement assigns an integer value to quantity from a string variable (strQuantity) which was read from the keyboard as a string input stream.

B.
cost = Double.parseDouble(strCost);
The above statement assigns a double value to cost from a string variable (strCost) which was read from the keyboard as a string input stream.
IV
Exceptions - unusual occurrence

A.
throws IOException appended at the end of the main method header passes errors to the Operating System.

I.
Sample

import java.io.*; // imports the IO classes needed

public class StringInput

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader dataIn =

 new BufferedReader(new InputStreamReader(System.in));
 double cost; // cost of the item

 int quantity; // number of items on hand

 String strCost; // cost of item read in as a string

 String strQuantity; // number of items read in as a string
 System.out.println("What is the cost of this item?"); // prompt

 strCost = dataIn. readLine(); // reads in cost as a string

 System.out.println("How many of these items do you have?"); // prompt

 strQuantity = dataIn. readLine(); // reads in quantity as a string

 cost = Double.parseDouble(strCost); // Converts the string strCost to a double numeric value

 quantity = Integer.parseInt(strQuantity); // Converts the string strQuantity to an integer

 // Output the values to the screen

 System.out.println("The cost is " + cost);

 System.out.println("The number on hand is " + quantity);

 }

}

Lesson 23: More on Input
Exception Handling

The last lesson showed how input can be received from the keyboard. If the user gave improper input (ex. gave a letter for a request for a number) then a number format exception would be displayed and the program would fail with a run time error. We could check the data to be sure that such an error does not occur. If the user input improper data, the program would catch this and ask the user to input data again.

 An exception is an event that starts a new object resulting from an erroneous or unusual situation. When an exception occurs the Java run-time environment throws the object exception to the processor who looks for a handler (a way to handle the problem) and unless the programmer codes a way to catch the exception, the program will terminate with an error message.
Exception handling is the concept of planning for these possible exceptions by telling the program to deal with them in a “nice” way.

Try and catch construct

One way of handling exceptions is through the try and catch blocks. The try block notifies Java that you plan to deal with exceptions rather than to allow them to happen. Any exception occurring in the code of the try block will not terminate the program.

The try block MUST be followed by a catch block. This is where the execution will be transferred. The try block throws the exception and the catch block catches and handles it.
Look at the following partial code. The try block includes all code for the input that will “jump” to the catch block if an exception occurs
Look at the following partial code. The try block includes all code for the input that will “jump” to the catch block if an exception occurs.
import java.io.*;

public class Price

{

 public static void main(String[] args) throws IOException

 {

 // Declaring variables

 BufferedReader dataIn =

 new BufferedReader(new InputStreamReader(System.in));

 String strPrice;

 // String variable that will hold data from the keyboard

 String strRequest;

// String variable that will hold

 double price=0;

// Variable holding total price

 int request=0;

 boolean readAgain;// Variable determines if receipt is needed

do

 try

 {

 readAgain=false;

 System.out.println("What is the total amount of order? "); // prompt

 strPrice = dataIn.readLine();

 price = Double.parseDouble(strPrice); // convert string to double

 System.out.println("Do you want a receipt?");

 System.out.println(" 1 for yes 0 for no");

 strRequest = dataIn.readLine();

 request = Integer.parseInt(strRequest);

 } // If an exception occurs in this try block(user inputs char instead of data) the program will not

 //terminate but rather go to the catch block

 catch (NumberFormatException e) // The catch block

 {

 System.out.println("You entered incorrect data");

 System.out.println ("Please reenter the data");

 readAgain=true;

 }

 while (readAgain);

 if (request ==1)

 System.out.printf("The total amount of the order is $%.2f", price);

 }

}
The point here is that try and catch blocks can be used by the programmer to handle unusual situations. This is just a brief introduction into exception handling in general and try and catch blocks in particular.

If all of this seems very confusing, don’t fear. The next lesson introduces a user defined class that simplifies input.

Lesson 23 Summary
I.
Exceptions

A.
An exception is an event that starts a new object resulting from an erroneous or unusual situation.

B.
When an exception occurs the Java run-time environment throws the object exception to the processor who looks for a handler (a way to handle the problem) and unless the programmer codes a way to catch the exception, the program will terminate with an error message.
II
try and catch blocks

A.
The try block notifies Java that you plan to deal with exceptions rather than to allow them to happen. Any exception occurring in the code of the try block will not terminate the program. If an exception occurs in the try block, the catch block will execute.

B.
catch block. This is where the execution will be transferred. The try block throws the exception and the catch block catches and handles it.
Lesson 24: Keyboard Class
Because interactive input is somewhat challenging for the novice programmer, a class called Keyboard has been developed to make the process easier for you. This is not a standard Java class and different texts use different methods to accomplish a similar task. Whenever you want to use a class not automatically brought in from java.lang, you must import the class. In this case you must have the code import Keyboard;
 Recall that import statements are given before any other non-comment code. In IDEs the keyboard class must be part of the project that you are working in. For example you must add an item (the keyboard class) to the current project. Lab 7 will direct you to the procedures necessary for you particular environment.

The following is a list of methods in the Keyboard class that you can use to get information from the keyboard.

readString(); This method is used to read a string of characters from the keyboard

readLong();
 This method is used to read a long data value from the keyboard.

readInt();
 This method is used to read an integer data value from the keyboard.

readShort();
 This method is used to read a short data value from the keyboard.

readByte();
 This method is used to read a byte data value from the keyboard.
readDouble();
 This method is used to read a double data value from the keyboard.

readFloat();
 This method is used to read a float data value from the keyboard.
These method calls are preceded by the class name Keyboard. The following code prompts the user to input a value of the width of a rectangle as a byte data type and then reads a byte data value from the keyboard. The other numeric formats are used the same way.

System.out.print("Enter width of rectangle(byte): ");

width = Keyboard.readByte();
The following code will prompt the user to hit return and then will wait for return key to be depressed before it moves on. This can be used as a pause. All these methods use the return button as an indicator that the input is complete.

System.out.print(“Please hit return to exit”);
Keyboard.readString();
import Keyboard; // do not use this if working in Eclipse and Keyboard is part of // the same project

import java.io.*;

public class DemonstrateKeyboardInput

{

public static void main(String[] args)
throws IOException

{

int height, width;

System.out.print("Enter height of rectangle: ");

height = Keyboard.readInt();

System.out.print("Enter width of rectangle: ");

width = Keyboard.readInt();

System.out.println("The area of the rectangle is " + (width * height));

}

}

Notice that height and width are integer data types. If a user inputs floating point numbers, the values are implicitly converted to integers. If the user inputs a non-numeric value, the Keyboard class has exception handling that will ask the user to input an integer.

The Keyboard class also has methods that will ask a prompt and input the value in one statement.

The following methods accomplish this for each of their data types.

readString(String prompt);
This method is used to prompt & read a string of characters from the keyboard

readLong(String prompt);
This method is used to prompt & read a long data value from the keyboard.

readInt(String prompt);
This method is used to prompt & read an integer data value from the keyboard.

readShort(String prompt);
This method is used to prompt & read a short data value from the keyboard.

readByte(String prompt);
This method is used to prompt & read a byte data value from the keyboard.
readDouble(String prompt);
This method is used to prompt & read a double data value from the keyboard.

readFloat(String prompt);
This method is used to prompt & read a float data value from the keyboard.

Example: Note they are the same methods except they allow a String parameter to act as the prompt.

import java.io.*;

public class KeyboardExample

{

public static void main(String[] args)
throws IOException

{

int height, width;

height=Keyboard.readInt("Please input the height of the rectangle:");

width = Keyboard.readInt("Please enter width of the rectangle");

System.out.println("The area of the rectangle is " + (width * height));

}

}
Lesson 24 Summary
Summary of methods used in the Keyboard

readString(); This method is used to read a string of characters from the keyboard

readLong();
 This method is used to read a long data value from the keyboard.

readInt();
 This method is used to read an integer data value from the keyboard.

readShort();
 This method is used to read a short data value from the keyboard.

readByte();
 This method is used to read a byte data value from the keyboard.
readDouble();
 This method is used to read a double data value from the keyboard.

readFloat();
 This method is used to read a float data value from the keyboard.
Each of the above methods can be used with a String parameter that acts as a prompt.

Example:

import java.io.*;

public class KeyboardExample

{

public static void main(String[] args)
throws IOException

{

int height, width;

height=Keyboard.readInt("Please input the height of the rectangle:");

width = Keyboard.readInt("Please enter width of the rectangle");

System.out.println("The area of the rectangle is " + (width * height));

}

}
Lesson 25: Introduction to Arrays
One dimensional arrays

So far we have talked about a variable as a single location in the computer’s memory. It is possible to have a collection of memory locations, all of which have the same data type, grouped together under one name. Such a collection is called an array. Like an object, an array must be declared and instantiated so that the computer can “reserve” the appropriate amount of memory. This amount is based upon the type of data to be stored and the number of locations, i.e. size of the array, each of which is given in the declaration.

Example: Given a list of adults’ ages (from a file or input from the keyboard), find the number of people for each age.

The programmer would not know the ages to be read but would need a space for each “legitimate age”. Assuming that ages 1, 2, ...,100 are possible, the following array declaration could be used.

public class AgeGroup

{

 static final private int TOTALYEARS = 100; // constant

 public static void main (String[] args)

 {

 int[] ageFrequency = new int[TOTALYEARS];

 // reserves memory for 100 ints. Declared much like an object

 // except for the brackets indicating an array

 }
}

Following the rules of variable declaration, the data type (integer in this case) is given first, followed by the double brackets which indicates an array followed by the name of the array (ageFrequency). The = new int [TOTALYEARS] allocates the memory locations. The number of memory locations must be an integer expression greater than zero and can be given either as a named constant (as shown in the above example) or as a literal constant (an actual number such as 100).

Each element of an array, consisting of a particular memory location within the group, is accessed by giving the name of the array and a position with the array (index). In Java the index is enclosed in square brackets and the numbering of the indexes always begins at 0 and ends with one less than the total number of locations.
Example: ageFrequency[3]=7; This points the value 7 in the 4th element of the array.

 0
 1 2 3 4 5 97 98 99

If in our example we wanted ages from 1 to 100, the age 4 would actually be placed in index 3 since it is the “fourth” location in the array. This odd way of numbering is often confusing to new programmers; however it quickly becomes routine.

Array initialization

In our example, we could let agefrequency[0] keep a count of how many people age one we read in, agefrequencey[1] keep a count of how many people of age two we read in, etc. Thus in our example, keeping track of how many people of a particular age exists in the data would require reading each age and then adding one to the location holding the count for that age. Of course it is important that all the counters start from 0. In Java the default values of numeric data type arrays are 0. Suppose we know that there is one person in each age group before we start. The following shows the code to add one to all elements of the array.
 int pos = 0;
//pos serves as the index to the array

 for (pos = 0; pos < TOTALYEARS; pos++)

 ageFrequency[pos] = ageFrequency[pos] + 1;

A simple for loop will process the entire array, adding one to the index each time through the loop. Notice that the index (pos) starts with 0. Why is the condition pos < TOTALYEARS used instead of pos <= TOTALYEARS? Remember that the last index is one less than the total number. The indexes go from 0 to 99 in this case.

If there is not a large number of elements in an array, an array could be initialized at declaration time. For example a 6 element array could be initialized at declaration as follows:

int sumOfSix[] = { 1, 2, 3, 4, 5, 6 };

Notice that an array size is not given since the size is based on the number of values used in initialization.

Array Processing

Arrays are generally processed inside loops so that the input/output processing of each element of the array can be performed with minimal statements. Our age frequency problem first needs to read in the ages from a file or from the keyboard. For each age read in, the “appropriate” element of the array (the one corresponding to that age) needs to be incremented by one. The following example shows how this can be accomplished. Reading from the keyboard, a negative number will be the sentinel data that ends the input.

System.out.println(“Please input an age from one to 100, put a negative number to stop”);
currentAge = Keyboard.readInt();
while(currentAge >=0)

{

 ageFrequency[currentAge-1] = agefrequency[currentAge-1] + 1;

 System.out.println(“Please input an age from on to 100 put a negative number to stop");

 currentAge = Keyboard.readInt();

}

Notice that we read a value into currentAge(which is the index, for our array) before the while loop. In reading from a file or from the keyboard we prime the read
, which means we read a value before we use our test condition to see if the loop should be executed. When we read an age, we increment the location in the array that keeps track of the amount of people in that age group. Since Java arrays always start with 0, that location will be at the index one value less than the age we read in.

 4
 0
 14
 5
 0
 6

 1
 0

 0 1 2 3 4 5 98 99

 1 year 2 years 3 years 4 years 5 years 6 years 99 years 100 years

Each element of the array contains the number of people of the given age. The data shown here is from a random sample run.

In writing the information stored in the array, we want to make sure that only those array elements that have values greater than 0 are output.

Look at the following code:

for (int ageCounter = 0; ageCounter < TOTALYEARS; ageCounter++)

 if (ageFrequency[ageCounter] > 0)

 System.out.println(“The number of people “ + (ageCounter + 1)

 + “ years old is “ + ageFrequency[ageCounter]);

The for loop goes from 0 to one less than TOTALYEARS (0 to 99). This will test every element of the array. If that element has a value greater than 0, it will be printed. What does printing (ageCounter + 1) do? It gives the age we are dealing with at any given time, while the value of agefrequency[ageCounter] gives the number of people in that age group.

Here is the complete program

import java.io.*;

public class Age {

 static final private int TOTALYEARS = 100; // constant

public static void main(String[] args)throws IOException

{

int[] ageFrequency = new int[TOTALYEARS];

System.out.println("Please input an age from one to 100, put a negative number to stop");

int currentAge = Keyboard.readInt();

while(currentAge >=0)

{

 ageFrequency[currentAge-1] = ageFrequency[currentAge-1] + 1;

 System.out.println("Please input an age from on to 100 put a negative number to stop");

 currentAge = Keyboard.readInt();

}

for (int ageCounter = 0; ageCounter < TOTALYEARS; ageCounter++)

 if (ageFrequency[ageCounter] > 0)

 System.out.println("The number of people " + (ageCounter+1)

 + " years old is " + ageFrequency[ageCounter]);

}

}

Array of Objects
Arrays can hold any type of elements including objects. For example if Student was a class we could create an array of objects from that class as follows:

Student[] studentArray = new Student[30];

 for(int i=0; i<30; i++){

 studentArray[i] = new Student();

 }

This creates a 30 element array with each element containing a Student object. The for loop allocates memory for each. If it has a user defined constructor than each element of the array has the values given in that constructor.

To use a method that belongs to an object that is part of an array, you place the appropriate index after the array name and before the dot that precedes the method name. If the Student class has a method called getGrade then the following would get a grade for each Student object in the array.

For example: If there was a Student class that had a constructor that assigned the value of ‘A’ to the private instance variable grade and a function getGrade() that returned that value the following main menu would print 30 ‘A’ s (one on each line).

 public static void main(String[] args)

 {

Student[] studentArray = new Student[30];

 for(int i=0; i<30; i++){

 studentArray[i] = new Student();

 }

 for (int x=0; x<30; x++)

System.out.println(studentArray[x].getGrade());

 }
Lesson 25 Summary

I.
One Dimensional Arrays

A.
Array Declaration

int[] ageFrequency = new int[TOTALYEARS];
 // reserves memory for 100 ints. Declared much like an object

 // except for the brackets indicating an array

B.
Array Processing

int pos = 0;
//pos serves as the subscript to the array

for (pos = 0; pos < 100; pos++)

ageFrequency[pos] = ageFrequency[pos] + 1;

C.
Declaration Array Initialization
int sumOfSix[] = { 1, 2, 3, 4, 5, 6 };

D.
Array of Objects

 public static void main(String[] args)

{

Student[] studentArray = new Student[30];

for(int i=0; i<30; i++){

 studentArray[i] = new Student();

}

for (int x=0; x<30; x++)

 System.out.println(studentArray[x].getGrade());

 }

Lesson 26: Arrays as Arguments
Arrays as Arguments

Individual elements of an array can be passed as an argument of a method in the same way as you would pass a single variable. For example an integer array declared as int[] someArray = new int[10] could have an individual element such as someArray[0] passed as an integer variable would be passed.

The entire array could also be passed as an argument. Arrays, just like all objects are passed by reference which means that the starting address of the array is passed. Since the method receives the address of the array, it can change or alter the values in the array. Variables are passed by value which means that a copy of the variable (but not the original memory location) is given to the method. If a method changed that value it would not effect the original value. Arrays and objects are different. Since the method has the “address” of the array it can go to the original location and change the value. This is called pass by reference. If you have something in a locker and you give the key to that locker to someone else, that person can go to your locker and take things from it. This is pass by reference. An array passes the “key” (the address of the array) to the method and the method can go to that array and make changes.

Variables, on the other hand, are passed by Value which means a copy of the value is made and given to the method. The method has no access to the original.

Every array object that is created is automatically assigned a data field named length. For example, an array declared as int[] inventory = new int[10]; has a function, inventory.length that returns the value of 10 since that is the number of elements in the array. This means that loops that handle arrays can use the length field.

for (int ageCounter = 0; ageCounter < ageFrequency.length; ageCounter++)

 if (ageFrequency[ageCounter] > 0)

 System.out.println(“The number of people “ + (ageCounter + 1)

 + “ years old is “ + ageFrequency[ageCounter]);

Study the sample programs below to see how method headings and calls to methods are handled with array arguments.

Sample program 26.1

public class arrays

{

public static void main(String[] args)

{

 int[] numberCheck = { 1, 2,3,4};

 int pos;

 for (pos = 0; pos < numberCheck.length; pos++)

 System.out.println("In main" + numberCheck[pos]);

 methodCheck(numberCheck); // The call to a method with array as

 // the actual argument

 for (pos = 0; pos < numberCheck.length; pos++)

 System.out.println("Main method after call "

 + numberCheck[pos]);

 }

 public static void methodCheck(int[] marray)

 {

 for (int count = 0; count < marray.length; count++)

 {

 System.out.println("In method" + marray[count]);

 marray[count]= (count +100);

 }

 } // end of methodCheck method

} // end of class

Try to determine the output from the above program.

Do you understand why the following is output for the above program?

In main 1

In main 2

In main 3

In main 4

In method 1

In method 2

In method 3

In method 4

Main method after call 100

Main method after call 101

Main method after call 102

Main method after call 103

Passing arguments

If I have an array declared in a main (or other) method I can pass it as an argument to a method. It will be pass by reference (I give it the address) which means the method can change the value of it.

Example

double[] gradeArray = new double[10];

gradeArray

findAvg(gradeArray) ; I am passing an array and so the formal parameter will be an array

public static void findAvg(double[] testScores)

{

 testScores is an array and can change the values in the gradeArray.

}

I can also pass one element of the array but that will the data type of the individual elements of the array.

In are example suppose I call another method with a double parameter

printGrade(gradeArray[2]); This is a call to a method that is passing one element of the array. Since each element of the array is a double data type, the data type of this argument is double.

The heading of the method printGrade will have a formal parameter of double data type

public static void printGrade(double test)

{

}

Lesson 26 Summary
I.
Length field

Every array object that is created is automatically assigned a data field named length. For example, an array declared as int[] inventory = new int[10]; is declared, the value of inventory.length has the value of 10 since that is the number of elements in the array. This means that loops that handle arrays can use the length field.

II
Arrays as arguments to a method

public class arrays

{

public static void main(String[] args)

{

 int[] numberCheck = { 1, 2,3,4}; // array declaration and initialization

 int pos; // subscript declaration

 for (pos = 0; pos < numberCheck.length; pos++)

 System.out.println("In main" + numberCheck[pos]);

 methodCheck(numberCheck); // The call to a method with array as

 // the actual argument

 for (pos = 0; pos < numberCheck.length; pos++)

 System.out.println("Main method after call "

 + numberCheck[pos]);

 }

 public static void methodCheck(int[] marray)

 {

 for (int count = 0; count < marray.length; count++)

 {

 System.out.println("In method" + marray[count]);

 marray[count]= (count +100);

 }

 } // end of methodCheck method

} // end of class

Lesson 27: Multi-Dimensional Arrays

Two-Dimensional Arrays

Data is often contained in a table of rows and columns that can be implemented with a two-dimensional array. Suppose we wanted to read data representing profits (in thousands) for a particular year and quarter.

Quarter 1
Quarter 2
Quarter 3
Quarter 4

 72

 80

 10

 100

 82

 90

 43

 42

 10

 87

 48

 53

This can be done using a two-dimensional array.

A two-dimensional array is a table or matrix consisting of rows and columns. A spreadsheet is an example of a matrix or two-dimensional array.

One-dimensional arrays have a set of square brackets after the array type. A two-dimensional array has two sets of brackets after the array type. The first set holds the number of rows and the second holds the number of columns in the two-dimensional array.

Example:

int [] [] examGrade = new int [4][5];
This declares a two dimensional array called examGrade that has four rows and five columns.

examGrade[0][0]
examGrade[0][1]
examGrade[0][2]
examGrade[0][3]
examGrade[0][4]

examGrade[1][0]
examGrade[1][1]
examGrade[1][2]
examGrade[1][3]
examGrade[1][4]

examGrade[2][0]
examGrade[2][1]
examGrade[2][2]
examGrade[2][3]
examGrade[2][4]

examGrade[3][0]
examGrade[3][1]
examGrade[3][2]
examGrade[3][3]
examGrade[3][4]

What actually is stored in each block is an integer value representing a grade.

Exam/ Name
 Mary
Sally
Molly
Burt
John

Exam 1
98
80
79
66
76

Exam 2
78
44
67
45
67

Exam 3
89
56
77
85
78

Exam 4
93
77
88
88
77

Initializing two–dimensional arrays
Just as with one-dimensional arrays , values for the elements in a two-dimensional numeric array have the value of zero. As with one-dimensional arrays, elements in a two-dimensional array can be assigned initial values.
int [] [] numbers = {

{ 3, 10, 5, 9},

{ 7, 3, 5, 2},

{ 4, 6, 3, 1}

 };

The above code generates a 3 x 4 array with the values enclosed in the curly brackets. Notice that each row is enclosed in their own set of curly brackets. Remember that the first row and first column are actually row 0 and column 0.

What is the value of numbers[2][3]? It is 1, the last value in the array
Example:

import java.io.*;

public class Grades

{

 final static int EXAMNUMBER = 4; // number of rows

 final static int NUMBEROFSTUD = 5; // number of columns

 private int [][] examGrades = new int[EXAMNUMBER][NUMBEROFSTUD];

 // declaration of two-dimensional arrays

 public void getGrades() throws IOException

 {

 int row, col; // loop counters

 for (row = 0; row < EXAMNUMBER; row++) // outer loop

 for (col = 0; col < NUMBEROFSTUD; col++) // inner loop

 {

 System.out.println("Please input grade for exam " + (row + 1)

 + " for student number " + (col+1));

 // we use (row + 1) since arrays start with 0

 examGrades[row][col]= Keyboard.readInt();

 }

 }

 public void printGrades()

 {

 int row, col; // loop counters

 System.out.println("Here are the exam scores");

 for (row = 0; row < EXAMNUMBER; row++)

 {

 for (col = 0; col < NUMBEROFSTUD; col++)

 System.out.print(examGrades[row][col] + " ");

 System.out.println(""); // skip a line for next row

 }

 }

 public static void main (String[] args) throws IOException

 {

 Grades mathClass = new Grades();

 mathClass.getGrades();

 mathClass.printGrades();

 Keyboard.readString("Hit enter to exit");

 }

}

Multi-dimensional arrays
Java arrays can have any number of dimensions (although more than three is rarely used). To input, process or output every item in an n-dimensional array, you need n nested loops.

Lesson 27 Summary
I.
Two-dimensional array

int [] [] examGrade = new int [3][2];
This declares a two dimensional array called examGrade that has three rows and two columns.

examGrade[0][0]
examGrade[0][1]

examGrade[1][0]
examGrade[1][1]

examGrade[2][0]
examGrade[2][1]

What actually is stored in each block is an integer value representing a grade.

Exam/ Name
 Mary
Sally

Exam 1
98
80

Exam 2
78
44

Exam 4
89
56

II
Initializing two-dimensional arrays

int [] [] numbers = {

{ 3, 10, 5, 9},

{ 7, 3, 5, 2},

{ 4, 6, 3, 1}

 };
III.
Multi-dimensional arrays

Java arrays can have any number of dimensions (although more than three is rarely used). To input, process or output every item in an n-dimensional array, you need n nested loops.

Lesson 28: Strings

The class String

We have been using String as if it was a primitive data type. It actually is a class and that is why the data type String begins with an upper case letter C.
Java defines a String class which is automatically imported into every program. You can create a String object the way that you create objects of other classes. For example,

String header = new String(“Hello”);

This defines a String object called header that has the string value “Hello”.

It can also be declared as we have been using it.

 String header= “Hello”;

Once declared, a String can be displayed in print & println statements.

Strings can also be declared in arrays.

String[] subjects = {“Math”, “English”, “History”};

and can be displayed, as with an array, in a loop:

for (int pos = 0; pos < subjects.length; pos++)

System.out.println(subjects[pos]);
A String name is a reference to a location and not to a particular value. This is different than a variable of a primitive type whose memory address holds a particular value. When another value is assigned to that variable than the new value replaces the old value. A String object is a bit different. If a new value of a String replaces an old value, the old value is not replaced, instead another memory location with the new value is created. For example, the following statements create two memory locations even though only the last value of “How are you?” is accessible.

String header = new String(“Hello”);

header = (“How are you?”);

Objects that can’t be changed are said to be immutable. Since Strings hold memory addresses, rather than actual values, you cannot make simple comparisons on strings. All you wold be comparing is memory locations which of course would never be the same. The String class provides several methods that allow us to work with Strings.

equals() method

The equals() method evaluates the contents of two String objects to determine equivalence.

String name1 = “Betty”;

String name2 = “Betty”;

if (name1.equals(name2))

 System.out.println(“Name is the same”);
equalsIgnoreCase() method

The equalsIgnoreCase() is similar to the equals() method except that it ignores case when determining equivalence.

String name1 = “Robert”;

String name2 = “robert”;

if (name1.equalsIgnoreCase(name2)

 System.out.println(“Name is the same”);

The above code will print to the screen “Name is the same”. If the equals() method had been used, the message would not have been printed in this case.

compareTo()

The compareTo() methods provides more information when two String objects are compared. A negative number is generated if the calling object is “less” than the argument object. A positive number is generated if the calling object is “greater” than the argument object. If both the calling and argument object are the same than a 0 is generated. Strings are considered “less than”, “greater than” or “equal” based on their position in the Unicode. Letters at the beginning of the alphabet has values less than letters at the end. In other words B is greater than A.

Since the compareTo() method returns numeric values, you can use them in conditional statements.
 if(name1.compareTo(name2) < 0)

charAt() This function returns one character from a string. The position of that character is given as an argument with 0 being the first character, 1 the second etc.

String name= “Dean DeFino”;

char letter;

letter = name.charAt(0); // letter gets the value of ‘D’

letter = name.charAt(10); // letter gets the value of ‘o’

Lesson 28 Summary
I.
String class

A.
String objects are declared and instantiated the same way as other objects.

B.
String objects have a reference value. The value stored is a memory location pointing to the start of the string.

C.
String objects are immutable. They cannot be changed.

II.
equals() method

if (name1.equals(name2))

 System.out.println(“Name is the same”);

In the equals() method, both strings must be equal and it is case sensitive.

In the above example name1 is said to be the calling object and name2 is the argument object.

III.
equalsIgnoreCase() method

This method is similar to the equals() method except it is NOT case sensitive

IV
compareTo() method
if (name1.compareTo(name2) < 0)

The above condition is true if name1 is less than name2

If name1 (the calling object) is greater than name 2 (the argument object) than the method returns a positive number. If they both are equal the method returns a 0.

Lesson 29: String Methods
toUpperCase() method

This method converts all characters in a string to the upper case.

 Sring name1= “Dean”;

If name1 has the value of Dean then name1 = name1.toUpperCase; will cause name1 to have the value of DEAN.

toLowerCase() method
This method works the same way as toUpperCase() method except that all characters in a string is converted to the lower case.
For the rest of the examples assume that name1 has the value “Dean”.
indexOf() method

This method determines if a specific character occurs within a String. If it does than the method returns the position of that character. Keep in mind that Java begins numbering positions with 0 rather than 1.
 name1.indexOf(‘a’) returns the value of 2 not 3.

endsWith() method

This method takes a String argument and returns true or false if a String object does or does not end with that string..

name1.endsWith(“an”) & name1.endsWith(“ean”) Are both true while

name1.endWith(“De”) is false.

startsWith() method

This method works exactly like the endsWith() method except it checks to see if the String argument is the start (rather than end) of the String in the object.

replace() method

This method allows one to replace all occurrences of some character within a string.

name1.replace(‘a’, ‘i’) will produce the string “Dein”
If name1 was “Deem” then name1.replace(‘e’, ‘I’) would produce DIIm.

toString() method
This method converts any primitive type to a String. For example, if you had some integer variable sum that has the value of 4, then toString(sum) returns the character ‘4'.

int sume=4;

char letter;

letter=toString(sum); letter now has the value ‘4'

substring()
Strings can be joined together. We saw this with the System.out.println statement. Every time we used the + symbol we were combining or concatenating two strings together. It is also possible to extract part of a String using the substring() method. It takes two arguments, a start position and an end position. It starts with the first argument and goes up to (but not including) the position of the end argument.

name1.substring(0,2) returns the string “De”

charAt(n) Where n is some positive integer value.

This returns one character from a String variable. The character is located at the position given by n. Keep in mind that string positions begin with position 0 not 1.

Example:

String grade= “yes”;

letterGrade=grade.charAt(0); LetterGrade will have the value ‘y’.

You can use multiple methods and functions to accomplice a certain task.

Example:

Suppose we want to check if a user entered a yes to a response. We could create both a string and a character variable.

String response;

char answer;

response=Keyboard.readString(); // This reads a string (multiple characters)

response=response.toUpperCase(); // This converts every character of that string to upper case letters

answer=response.charAt(0); // This grabs the first element of the string and places it in the

 // character variable called answer

We do this so we can do a simple test. We can use comparisons on character data but not strings.

if (answer==’Y’)

This allows the users to be a bit careless in their response. Any word that begins with a y will be accepted as yes.

There are other String methods, but these provide enough to do most String operations.

Lesson 30: StringBuffer
Converting Strings to Numbers

In Lesson 22 we learned how to input a string from the keyboard and convert it to an integer or double. We review that process in this lesson.

To convert a String to an integer you use the Integer class. It has a parseInt() method that has a String argument which is converted to an integer.

Example 1:
String stringQuantity;

int quantity;

System.out.println(“How many items do you want?”);

strquantity = dataIn.readLine(); // This reads a string from the keyboard

quantity = Integer.parseInt(strQuantity);

 // This converts the string from the keyboard to an integer

Example 2:
String strCost;

double cost;

System.out.println(“What is the cost of this item?”);

strCost = dataIn.readLine(); // This reads a string from the keyboard

cost = Double.parseDouble(strCost);

 // This converts the string from the keyboard to double

StringBuffer
Strings are immutable and thus Strings can not really be altered. The StringBuffer class is an alternative to the String class. It is more flexible in that you can insert or append new contents into a StringBuffer.

The StringBuffer has an append() method which allows characters to be added to the end of a StringBuffer object.

Example 3:
StringBuffer farewell = new StringBuffer(“Good”);

farewell.append(“ bye”);

This produces the string “Good bye” in the farewell object.

The insert() method allows characters to be added within a string. It has two arguments: the first indicates the position to add characters and the second argument is those characters.

Example 4:
StringBuffer birthday = new StringBuffer(“May 1982");

birthday.insert(4, “28, ”);

The above code creates the string “May 28, 1982" in the birthday StringBuffer object.

Lesson 30 Summary
I.
Converting Strings to numeric data

A.
Converting a string to an integer

String stringQuantity;

int quantity;

System.out.println(“How many items do you want?”);

strquantity = dataIn.readLine(); // This reads a string from the keyboard

quantity = Integer.parseInt(strQuantity);

// This converts the string from the keyboard to an integer

B.
Converting a string to a double

String strCost;

double cost;

System.out.println(“What is the cost of this item?”);

strCost = dataIn.readLine(); // This reads a string from the keyboard

cost = Double.parseDouble(strCost);

// This converts the string from the keyboard to double

II
StringBuffer (The StringBuffer class allows its objects to be altered through it’s methods)

A.
append(“characters”) Adds characters to the object that calls it

B.
insert(position, “characters”) Inserts “characters” starting at position to the object that calls it.
Lesson 31: Introduction Applets
Applets

An applet is a mini Java program that can be downloaded and executed as part of a Web page or in an applet viewer provided by Sun Microsystems. An applet can be used to create graphical objects and components such as buttons that are used to create some action (events). Although the development of applets is similar to the application programs studied thus far, there are some major differences. Applets run in a graphical environment, and thus everything, including text, is in graphical mode which has different commands then application programs.

Applet code
Writing an applet involves a few changes and additions to an application program. We are familiar with the import statement. Most applets use pre-existing classes designed to create many aspects used in Web pages. Generally we use the following two import statements in our applets:

import javax.swing.JApplet; // This allows the user to write an applet

import java.awt.*; //This allows the user to sue everything in the Color and Graphics class

The java.awt packet (Abstract Windows Toolkit) contains Windows components such as menus, buttons and labels so that the user does not have to re-invent these components. After listing the import statements, the class header is given. This is very similar to application classes except that it includes the words extends JApplet at the end of the header. The keyword extends indicates that your class will inherit, all the attributes of the pre-defined applet class.

Graphical programming

The picture or graph of an object created by using applets can be thought of as a grid where each location is indicated by an x and y coordinate. The graph starts with 0,0 at the upper left hand corner of the grid. This is different than the graphs you studied in algebra since there are no negative coordinates.

 (0,0) X axis

......

:

:

(0,300)

 (400,300)

Example 31.1 Bulls Eye Program

import javax.swing.JApplet; // Allows user to write an applet

import java.awt.*; // Allows user to use everything in the Color and Graphics class in the awt library

public class BullsEye extends JApplet

{

 public void paint(Graphics g)

 {

 super.paint(g);

// Here are the instructions that will draw a bull's eye. The object that has all of the drawing methods

// that will be used is called g

 g.setColor (Color.black);

 g.fillOval(60, 40, 220, 220);

 g.setColor (Color.red);

 g.fillOval(80, 60, 180, 180);

 }

}

In working with applets, we need to understand some built-in methods and libraries. We need to import the two new libraries discussed earlier.

Notice that we now have added “extends JApplet” to our first line of code. This means that we are adding an import component to our program. It is the Applet class that uses a more recent graphical library called swing. The keyword extends indicates that your class will inherit all the attributes of the pre-defined JApplet class.

Just as an application program requires the main() method, applets use two very import methods:

public void inti()

public void paint(Graphics g)

The init method is important in that is is used to initalize any class instance variables. This is not needed in our current example.

The paint method is automatically called when the applet needs to draw or redraw itself. It is inside this method that you place code to display words and graphics that should appear in the applet window. The pain method’s only parameter is a Graphics object which is automatically generated and sent to the paint method. We can then use this object to call various graphic methods.

Built in Graphics methods

drawLine(int xStart, int yStart, int xEnd, int yEnd)

draws a line starting at (xStart, yStart) and ending at (xEnd, yEnd)

drawRect(int x, int y, int width, int height)

draws the outline of a rectangle with its top-left corner at (x,y) with the specified width and height in pixels

fillRect(int x, int y, int width, int height)

draws a solid rectangle with its top-left corner at (x,y) with the specified width and height in pixels

clearRect(int x, int y, int width, int height)

draws a solid rectangle in the current background color with its top-left corner at (x,y) with the specified width and height in pixels

drawOval(int x, int y, int width, int height)

draws an outline of an oval inside an invisible, bounding rectangle with the specified width and height in pixels. The top-left corner of the rectangle is (x,y)

fillOval(int x, int y, int width, int height)

draws a solid oval inside an invisible, bounding rectangle with the specified width and height in pixels. The top left corner of the rectangle is (x,y)

drawstring(String s, int, x, int y)

displays the String s. If you were to draw an invisible, vounding rectangle around the first letter of the the String, (x,y) would be the lower-left corner of that rectangle.

setColor(Color c)

Set the color. Some available colors, black, blue cyan, darkGray, gray, green, lightGray,

magenta, orange, pink, red, white and yellow. (Capitalization of color matters!)

How to use the methods:

1.
 Start with the name used in the object name used for the Graphics library in the paint method (which is this example is g).

2.
To set the color to draw with: g.setColor(Color.orange) will set the color to orange

3.
To draw a rectangle with the top-left corner x,y position of 50, 50 and a width of 100 and a height of 200: g.drawRect(50, 50, 200, 200)

We are now ready to discuss the BullsEye graphic instructions

 g.setColor (Color.black); // this sets the color of our pen black

 g.fillOval(60, 40, 220, 220); // this fills in a black circle inscribed in a square

 // starting at location 60,40 and extending horizontally

 // for 220 pixels and vertically for 220 pixels

 g.setColor (Color.red); // This sets the color of our pen red

 g.fillOval(80, 60, 180, 180); // this fills in a red circle inscribed in a square

 // starting at location 80,60 and extending horizontally

 // and vertically for 180 pixels. Note that this will

 // overwrite most of the black circle.

The completion of this target is left as a lab exercise.

Lesson 31Summary
Applets
An applet is a mini Java program that can be downloaded and executed as part of a Web page or in an applet viewer provided by Sun Microsystems. An applet can be used to create graphical objects and components such as buttons that are used to create some action (events).
Built in Graphics methods

drawLine(int xStart, int yStart, int xEnd, int yEnd)

draws a line starting at (xStart, yStart) and ending at (xEnd, yEnd)

drawRect(int x, int y, int width, int height)

draws the outline of a rectangle with its top-left corner at (x,y) with the specified width and height in pixels

fillRect(int x, int y, int width, int height)

draws a solid rectangle with its top-left corner at (x,y) with the specified width and height in pixels

clearRect(int x, int y, int width, int height)

draws a solid rectangle in the current background color with its top-left corner at (x,y) with the specified width and height in pixels

drawOval(int x, int y, int width, int height)

draws an outline of an oval inside an invisible, bounding rectangle with the specified width and height in pixels. The top-left corner of the rectangle is (x,y)

fillOval(int x, int y, int width, int height)

draws a solid oval inside an invisible, bounding rectangle with the specified width and height in pixels. The top left corner of the rectangle is (x,y)

drawstring(String s, int, x, int y)

displays the String s. If you were to draw an invisible, vounding rectangle around the first letter of the the String, (x,y) would be the lower-left corner of that rectangle.

setColor(Color c)

Set the color. Some available colors, black, blue cyan, darkGray, gray, green, lightGray,

magenta, orange, pink, red, white and yellow. (Capitalization of color matters!)

Example program.

import javax.swing.JApplet; // Allows user to write an applet

import java.awt.*; // Allows user to use everything in the Color and Graphics class in the awt library

public class BullsEye extends JApplet

{

 public void paint(Graphics g)

 {

 super.paint(g);

// Here are the instructions that will draw a bull's eye. The object that has all of the drawing methods

// that will be used is called g

 g.setColor (Color.black);

 g.fillOval(60, 40, 220, 220);

 g.setColor (Color.red);

 g.fillOval(80, 60, 180, 180);

 }

}

Lesson 32: Converting from application to applet

Making an applet from an application

The following Java application program just prints to the screen some basic statements. This program can be easily converted to an applet that is run on a browser or Internet page.

public class nameAddressInfo

{

 public static void main(String[] args) // method header

 {

System.out.println(“ Wally Willobean”);

System.out.println(“119 Main St.”);

System.out.println(“VegetableLand, Md. 22232");

 }

}
The first thing we need to do is import the necessary classes.

We add the two import statements:

import javax.swing.JApplet;

import java.awt.*;
We then reproduce the class header with the added extends JApplet code.

public class nameAddressInfo extends JApplet
In creating a label to run on a Web page or Applet widow we can use the Window label component. Label is a built-in class that holds text that can be displayed within an applet. As with any class, an object can be declared without allocating memor or the Label constructor can be called to put text in the object as follows:

Label nameInput= Label(“Hello. What is your name?”);

The add() method will add a component such as Label to an applet.

Look at the following code.

Sample program 32.1

import java.applet.*;

import java.awt.*;

public class Test extends Applet

{

 Label nameInput = new Label("Wally Willobean");

Label streetAddress = new Label("119 Main St.");

Label cityAddress = new Label("VegetableLand, Md. 22232");

public void init()

 {

 add(nameInput);

 add(streetAddress);

 add(cityAddress);

 }

}

The above program puts name, street and city all on the same line. The Label component is used more for a Windows component. It is better to use graphic mode for this applet.
Paint Method

As noted in the last lesson, many applets are in graphical mode which acts as a “paintbrush” painting a picture or a text to the Web page. The paint method takes a Graphics argument and returns nothing. That argument is generally agreed to be g, although anything could be used. Graphics is a predefined class and g is an object of that class.

public void paint(Graphics g) // paint method header
The drawString method is used to write a message (in graphical mode) to the page. It has three arguments. The first is the string itself, and the other two represent the horizontal and vertical position.

Since drawstring is a method is must be called by an object (in this case the g argument).

g.drawString(“Wally Willobean”, 15,20);
Sample program 32.1 could be implemented as follows:

import javax.swing.JApplet;

import java.awt.*;
public class NameAddressInfo extends JApplet

{

 public void paint(Graphics g)

 {

 g.drawString("Wally Willobean", 15,20);

 g.drawString("119 Main St.", 15,30);

 g.drawString("VegetableLand, Md. 22232",15,40);

 }

}

The numbers following it represent where the string will be printed on the grid

Lesson 32 Summary
Converting application of this

public class nameAddressInfo

{

 public static void main(String[] args) // method header

 {

System.out.println(“ Wally Willobean”);

System.out.println(“119 Main St.”);

System.out.println(“VegetableLand, Md. 22232");

 }

}
to this

import javax.swing.JApplet;

import java.awt.*;

public class NameAddressInfo extends JApplet

{

 public void paint(Graphics g)

 {

 g.drawString("Wally Willobean", 15,20);

 g.drawString("119 Main St.", 15,30);

 g.drawString("VegetableLand, Md. 22232",15,40);

 }

}

Lesson 33: TextField & Button Components

TextField Componet

A TextField is a Windows component in which a user types a single line of text data.

TextField is a class that has a constructor. It can be initialized with 0,1, or 2 arguments.

public TextField() Creates an empty TextField with an unspecified length

public TextField(int numOFCol) one argument that provides a width for the field

public TextField(String initialText) one argument that provides some text in the field

public TextField(String initialText, int numOfCol) two arguments that provide both a text and width size

Example:

TextField message = new TextField(10); Empty text field that has approximately 10 characters

TextField message = new TextField(“Thanks”); Text filed with message string

The setText() method allows the text in a TextField to be changed.
A user, upon encountering a TextField, needs to position the mouse pointer in the TextField and click to get an insertion prompt. A TextField has keyboard focus, which means that the keyboard entries will be entered at that location. The requestFocus() method has the insertion point automatically placed in the TextField so that the user does not have to click in the TextField.

TextFields that have the capability of accepting keystrokes are said to be editable. You can make a TextField editable or un-editable through the method. This could be used for giving users only one change to answer some question in the TestField.

message.setEditable(false); Makes message TextField non-editable. User can’t change string in TextField.

message.setEditable(true); Makes message TextFiled editable.
The getText() method retrieve the text of a TextField and assigns it to another String object.
Button component

A Button component generates a button on the Web page with an optional label. It has only two possible constructors.

public Button() Creates an unlabeled Button.

public Button(String label) which creates a labeled button.

The setLabel() method is used to change the label on the button in the same way setText() is used on a TextField.

The getLabel() method is used to get the label of a button in the same way getText() is used on a TextField.

Just as in Label, the add() method is used to add the Button and TextField component to a browser.
Study the following code:

import java.applet.*; // Allows user to write an applet

import java.awt.*;

public class Greet extends Applet

{

Label greeting = new Label("Hello. Who are you?");

Font bigFont = new Font("TimesRoman", Font.ITALIC,24);

Button pressHere = new Button("Press Here"); // defines a button

TextField message = new TextField(10); // defines a TextField

public void init()

{

greeting.setFont(bigFont);

add(greeting);

add(message);

add(pressHere);

message.requestFocus();

}

}

Since we are not using graphics but only init() we do not import the Java swing class but just the applet class methods and we extend the Applet class

Lesson 33Summary
I.

TextField Component -
A TextField is a Windows component in which a user types a single line of text data.

 A.
public TextField() Creates an empty TextField with an unspecified length

 B.
public TextField(int numOFCol) one argument that provides a width for the field

 C.
public TextField(String initialText) one argument that provides some text in the field

D.

public TextField(String initialText, int numOfCol) two arguments that provide both a text and width size
Example:

TextField message = new TextField(10);

 E.
setText() – allows you to change the text in a TextField

 F.
getText() - allows you to get the string in a TextField

 G.
requestFocus() - automatically sets the insertion point in the TextField
II.

Button Component -

A Windows button
A.
public Button() – places an unlabeled button on the Web page

B.
public Button(String label) places a labeled button on the Web page

Example:

Button pressHere = new Button("Press Here");

C.
setLabel() – allows you to change the label in a Button

D.
getLabel() allows you to get the label from a button

Lesson 34: Event-Driven Programming
Event

An event occurs whenever some user of the applet takes action on a component (such as a Label, TextField, Button, etc.). This action could be clicking a mouse on a Button object or filling in a TestField. Event-driven programs can have any number of events take place in any order. A word document is an example of an event-driven package. The user can select text, a menu item etc. in any order and the program must be ready to respond to all those events.

The component on which an event is generated is called the source of the event. An object that is interested in an event is called the listener. If you want an object to be a listener for an event, you must register the object as a listener for the source. A Java component source object (like a Button) maintains a list of registered listeners and notifies all of them when any event occurs. Upon receiving the news of an event, the listener object executes an event-handling method.

In order to respond to user events, the following three things must be done:

1)
Prepare your applet to accept event message.

This is done first by importing the java.awt.event package and then by adding the words implements ActionListener to the class header. The java.awt.event package includes event classes (classes designed to handle event driven actions). ActionListener is a set of specifications or an interface between Event objects and the methods that can be used with them. Interfaces are implemented and not extended or imported.

2)
Tell your applet to expect events to happen

Expectations of events are handled by Listener methods such as addActionListener() and addTextListener(). If we want an action of a source such as a Button object called pushButton to be sent to this current applet, (the target) we include the following statement in our applet: pushButton.addActionListener(this); This causes any ActionEvent messages (such as the clicking of the button) that comes from pushButton to be sent to this current applet. The keyword this describes a reference to the current object or in this case to this current applet.

3)
Tell your applet how to respond to any event that happens

The actionPerformed(ActionEvent e) method which is contained in the ActionListener interface, is the method that will be executed when ever an action on a component occurs. This method is actually written by the applet, which is registered to receive the action. The body contains anything you want to do when the event action occurs.

Example:

public void actionPerformed(ActionEvent someEvent)

 {

 System.out.println(“This is the action of actionPerformed()”);

 }
Interactive Output
New labels can be created during the interaction with a user. A label can be declared such as

 Label response = new Label(“”);
After some user response the Label can be created with the setText() method.
Sample Program 34.1

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class Greet extends Applet implements ActionListener

 // prepare Applet to accept event

{

Label greeting = new Label("Hello. Who are you?");

Font bigFont = new Font("TimesRoman", Font.ITALIC,24);

Button pressHere = new Button("Press Here");

TextField message = new TextField(10);

public void init()

{

greeting.setFont(bigFont);

add(greeting);

add(message);

add(pressHere);

pressHere.addActionListener(this);

 // tells applet to expect events to happen

message.addActionListener(this);

 // tells applet to expect action from TextField

message.requestFocus();

}

public void actionPerformed(ActionEvent e)

{ // This method performs the action when the

 // event occurs

String name = message.getText();

greeting.setText("Hi " + name);

}

}
Study this code very carefully. The lab of this section asks you to key this program and to give comments to the various commands.
You can remove a component with the remove() method. For example:

remove(greeting);

remove(pressHere);
removes the respective components.

Look at the following revised code of the public void actionPerformed(ActionEvent e) method.

String name = message.getText(); //gets the text in message Label newGreeting = new Label(""); //creates a new Label component

newGreeting.setText(" Hi " + name); // sets the new Label component

add(newGreeting); // add the component to the Web page

The above code still doesn’t work. The new component is not in the init() method. We have to first invalidate and then validate this page so that it works. The changes are then effected by using the invalidate() and validate() method.

Sample Program 34.2

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class GreetEvent extends Applet implements ActionListener // prepare for events

{

Label greeting = new Label("Hello. Who are you?");

Font bigFont = new Font("TimesRoman", Font.ITALIC,24);

Button pressHere = new Button("Press Here");

TextField message = new TextField(10);

public void init()

{

greeting.setFont(bigFont);

add(greeting);

add(message);

add(pressHere);

pressHere.addActionListener(this); // tells applet to expect events to happen

message.addActionListener(this);// tells applet to expect action from text

message.requestFocus();

}

public void actionPerformed(ActionEvent e)

{ // This method performs the action when the event occurs

String name = message.getText();
//greeting.setText("Hi " + name);

Label newGreeting = new Label(""); //creates a new Label component

newGreeting.setText(" Hi " + name); // sets the new Label component

add(newGreeting); // add the component to the Web page

invalidate();

validate();

}

}
Lesson 34 Summary

I.
Events

A.
An event occurs whenever some user of the applet takes action on a component (such as a Label, TextField, Button, etc.).
B.
The component on which an event is generated is called the source of the event. An object that is interested in an event is called the listener.

C.
If you want an object to be a listener for an event, you must register the object as a listener for the source

II
Preparation of Event Programming

A.
Prepare your applet to accept event message.

This is done first by importing the java.awt.event package and then by adding the words implements ActionListener to the class header.

B.
Tell your applet to expect events to happen

Expectations of events are handled by Listener methods such as addActionListener() and addTextListener(). If we want an action of a source such as a Button object called pushButton to be sent to this current applet, (the target) we include the following statement in our applet: pushButton.addActionListener(this);

C.
Tell your applet how to respond to any event that happens
The actionPerformed(ActionEvent e) method is written by the user to determine what action should be done upon the occurrence of an event..

Lesson 35: Applet Life Cycle
Applet Methods

As noted in Lesson 31, an applet has at least four methods: init(), start(), stop(), destroy(). These four methods are automatically called by the browser and are implicitly created for you. If you write any one of these four methods, your replace or override the original default method of the type you wrote.

The init() method is the first method executed. If you have any initialization tasks that need to be performed then you should write your own init() method. Such tasks as setting up user interface components (such as Label and others that will soon be learned) are done in the init() method.

The start() method executes after the init() method. This method is executed each time the applet becomes active. start() could be executed several times. A user could visit a Web page and then visit another Web page. The applet of the first Web page would become inactive. When the user returns to the page the start() method of that applet will be executed again. If the user wants any actions to take place when a user revisits an applet, then the user should write their own start().

The stop() method is invoked upon leaving the Web page. The start() and stop() methods can be executed over and over again until the user closes the browser in which case the destroy() method is invoked. The destroy() method releases any resources the applet might have allocated. The user usually does not write the stop() or destroy() methods.
Setting a Location

The setLocation() method is used to reset the location of a component on the window. It has two arguments that represent the horizontal (x-axis) position and the vertical (y-axis) position. The top left position is labeled 0,0. The x-axis increases as the cursor is moved to the right and the y-axis increases as it moves down. You can place a component called press at the top left corner with the instruction press.setLocation(0,0); NOTE: If you place a component beyond the bounds of the window defined in the html code, the component will not be seen.

Enabling or disabling a component
The setEnabled() method is used to either activate or deactivate a component based on whether the argument is true (enable) or false (disable). Example: press.setEnabled(false); would cause the component to fade and become inactive.

Look at the following code and make sure you understand all the instructions.

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class Mobile extends Applet implements ActionListener

{

Label header = new Label("Mobile Component");

Button press = new Button("Press here");

int xLoc = 10;

int yLoc = 20;

public void init()

{

add(header);

add(press);

press.addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{

header.setLocation(xLoc += 10, yLoc += 10);

 //changes location of the Label

if (yLoc==200)

press.setEnabled(false); //disenable the component when y becomes

 // greater than or equal to 200

}

}

Lesson 35 Summary
I.
Applet Methods

A.
The init() method is the first method executed when the program is run.

B.
The start() method executes after the init() method. This method is executed each time the applet becomes active.

C.
The stop() method is invoked upon leaving the Web page.

D.
The destroy() method releases any resources the applet might have allocated. It executes upon exit of the browser

II
setLocation and setEnabled methods

A.
The setLocation() method is used to reset the location of a component on the window.

 press.setLocation(0,0);

B.
The setEnabled() method is used to either activate or deactivate a component based on whether the argument is true (enable) or false (disable).

 press.setEnabled(false);

Lesson 36: Interactive Example

This lesson gives an example of an interactive program. It has several Label components and a button and TextField component. It allows the user to indicate a number of people registering for a drama workshop. It then calculates the total bill for all the people. In this case there is a set price for all individuals. Make sure you understand this program. You will be required to give comments and change it in one of the lab exercises.

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class SeminarTotal extends Applet implements ActionListener

{

Label seminarName = new Label ("Drama Workshop");

Button calculate = new Button("Calculate");

Label prompt = new Label

("Enter the number of people attending");

TextField numRegs = new TextField(5);

Label perPerson = new Label("Plan Now ");

Label total = new Label("Multiple registration");

Font bigFont = new Font("Helvetica", Font.ITALIC, 24);

static final private int INDIVIDUALFEE = 40;

public void init()

{

seminarName.setFont(bigFont);

add(seminarName);

add(prompt);

add(numRegs);

numRegs.requestFocus();

add(calculate);

calculate.addActionListener(this);

numRegs.addActionListener(this);

add(perPerson);

add(total);

}

public void start()

{

numRegs.setText("");

 invalidate();

validate();

}

public void actionPerformed(ActionEvent e)

{

int guests = Integer.parseInt(numRegs.getText());

int eventFee = 0;

eventFee = guests * INDIVIDUALFEE;

perPerson.setText("$" + INDIVIDUALFEE + " per person");

total.setText("event cost $" + eventFee);

}

}

Lesson 37: Scope & Blocks

Blocks
Code between a pair of curly brackets is called a block. Blocks can be nested, which means that a block (inner block) could be contained within another block (outer block). The inside block is said to be nested within the outside block. A variable declared within a block cannot be used outside of that block.

Scope
The scope of an identifier (variable, constant etc.) is an indication of where it can be accessed in a program. The scope of any variable is within the block in which is was declared. A variable ceases to exist and goes out of scope at the end of the block in which it was declared. Methods also have scope that can be defined by a modifier. A static method is one that can be accessed anywhere in the program. Within a method, one can declare a variable with the same name many times, as long as each declaration is in its own, non-overlapping block.. In other words a inner nested block cannot contain a variable that has the same name as a variable that is declared in the outer block. A block could contain a variable with the same name as a variable in another block as long as those blocks are NOT nested (overlapping). If a variable is declared within a class and the same variable name is used within a method of the class, the variable in the method takes precedence over the first variable. What this means is that in the method the use of that name refers to the variable in the method and not of the class.

Sample program 37.1

public class Example

{

private int someNumber = 44;

 private int anotherNumber = 20;

public void someMethod()

 {

int someNumber = 88;

System.out.println(“someNumber is “ + someNumber);

System.out.println(“anotherNumber is “ + anotherNumber);

 }

 public void anotherMethod()

 {

System.out.println(“someNumber is “ + someNumber);

System.out.println(“anotherNumber is “ + anotherNumber);

 }

public static void main(String[] args)

 {

 Example a = new Example();

 a.someMethod();

 a.anotherMethod();

 }

}
The output is as follows:

someNumber is 88

anotherNumber is 20

someNumber is 44

anotherNumber is 20
Why is someNumber printed as 88 the first time and as 44 the second time?

Overloading Methods
Uniqueness of identifier names is a vital concept in programming languages. The convention is Java is that every variable, function, constant etc. should be unique. Two or more methods may have the same name as long as their arguments differ in quantity or data type. A class could have two methods with the same name that do the exact same thing on different data types.

Sample Program 37.2
import java.io.*;

public class Example

{

 private double price;

public void determinePrice(double originalPrice, double discountRate)

 {

 price = originalPrice - originalPrice * discountRate;

 System.out.println("The discount price is " + price);

 }

 public void determinePrice(double originalPrice, int discountRate)

 {

 price = originalPrice - (originalPrice * (discountRate / 100.00));

 System.out.println("The discount price is " + price);

 }

public static void main(String[] args)

 {

 Example a = new Example();

 Example b = new Example();

 a.determinePrice(200.00, .05);

 b.determinePrice(200.00, 5);

 }

}
Notice that there are two methods with the same name and both have two arguments. However, the first method has both arguments with double data type (one for the price and the other for the discount rate) while the second argument of the second method with the same name is an integer data type. One method accepts discount rate as a decimal number like .05 for 5% while the other accepts discount rate as an integer like 5 for 5%. The calculation for the discount rate is done differently in the two methods. Notice in the second method that the discount rate (as an integer) is divided by 100.00. Could this be divided by 100? Why or why not? If you divided by 100 what additional process would have to be included to get the correct answer?

Ambiguity
In the above example, the computer knew which method to call because of the data type that was used in the actual arguments. Overloading methods runs the risk of creating an ambiguous situation in which the compiler cannot determine which method to call. There is a problem with the above example. An actual argument that is an integer could be promoted to a double data type to match a corresponding formal double data type argument. In the above example, if the call had been made with two integer types such as b.determinePrice(200, 5) the compiler could have converted both integers to double and call the first method or converted just the first argument to double and called the second method. The problem could be overcome by having more than two methods of the same name. A third method with two integer arguments could overcome the above problem.

This lesson’s summary is given at the end of the next lesson (Lesson 38).

Lesson 38: Overloading Constructors
Different number of arguments
Overloading is more commonly done with different number of arguments. Methods can have the same name if they have a different number of parameters (arguments);

Example:

public void someMethod(double price);

public void someMethod();

public void someMethod(double price, int discountRate);
Overloading Constructors
There can be multiple constructors as long as they have different arguments (quantity and/or data type).

Study the following program very carefully.

Sample program 38.1
import java.io.*;

public class Discount

{

 private double price;

public Discount(double originalPrice, double discountRate)

{

 price = originalPrice - originalPrice * discountRate;

}

 public Discount(double originalPrice, int discountRate)

{

 price = originalPrice - (originalPrice * (discountRate / 100.00));

}

public Discount(int originalPrice, int discountRate)

{

 price = originalPrice - (originalPrice * (discountRate / 100.00));

}

public Discount(double originalPrice)

{

 price = originalPrice - (originalPrice * .10);

}

 public Discount()

{

 price = 100;

}

 public void printDiscount()

 {

 System.out.println("The discount price is " + price);

 }

 public static void main(String[] args)

 {

 Discount a = new Discount(200, .05);

 Discount b = new Discount(200, 5);

 Discount c = new Discount(200.0, 5);

 Discount d = new Discount();

 Discount e = new Discount(100);

 a.printDiscount();

 b.printDiscount();

 c.printDiscount();

 d.printDiscount();

 e.printDiscount();

 }

}

Constructors are called during their declaration and instantiation. Notice that object a,b,c,d & e are instantiated with different constructors since they each have different arguments. The following table shows their difference and which constructor (first, second, third, fourth, or fifth) is used.

object

of arguments Data type of arguments

Constructor

a

2

integer(promoted to double), double First

b

2

integer, integer

Third

c

2

double, integer

Second

d

0

Fifth

e

1

double

Fourth

Lesson 37 & 38 Summary
I.
Blocks
Code between a pair of curly brackets is called a block. Blocks can be nested, which means that a block (inner block) could be contained within another block (outer block). The inside block is said to be nested within the outside block. A variable declared within a block cannot be used outside of that block.

II
Scope
The scope of an identifier (variable, constant etc.) is an indication of where it can be accessed in a program. The scope of any variable is within the block in which is was declared.

III.
Overloading Methods
Two or more methods may have the same name as long as their arguments differ in quantity or data type.

public void determinePrice(double originalPrice, double discountRate)

 {

 price = originalPrice - originalPrice * discountRate;

 System.out.println("The discount price is " + price);

 }

 public void determinePrice(double originalPrice, int discountRate)

 {

 price = originalPrice - (originalPrice * (discountRate / 100.00));

 System.out.println("The discount price is " + price);
 }
IV
Ambiguity
 Overloading methods runs the risk of creating an ambiguous situation in which the compiler cannot determine which method to call. There is a problem with the example in section III above.. An actual argument that is an integer could be promoted to a double data type to match a corresponding formal double data type argument. In the above example, if a call had been made with two integer types the compiler could have converted both integers to double and call the first method or converted just the first argument to double and called the second method. The problem could be overcome by having more than two methods of the same name. A third method with two integer arguments could overcome the above problem.

I.
Overloading Constructors
There can be multiple constructors as long as they have different arguments (quantity and/or data type).

public class Example

 {

public Example(double price);

 public Example();

 public Example(double price, int discountRate);

 }
Lesson 39: Review of Applets

It is important to review the concept of Applets studied so far. We can create an applet that inputs a price and a discount rate and then determine the discount price. The following code does that. Each instruction has an explanation either below or to the right. Study this very carefully for you will be asked to create an applet in the lab. There is no summary of this lesson.

import java.awt.*; // import the proper classes

import java.applet.*;

import java.awt.event.*;

public class DiscountApplet extends Applet implements ActionListener

// We implement the ActionListener which will allow us to have event controlled applets

{

Label header = new Label("Discount Price");

//creates a label that acts as a header for the applet

Label priceHeader = new Label("Please input original price");

// creates a label for a text field that will accept the original price

TextField priceField = new TextField(" ");

 // creates a field to accept original price. We have various ways to create it size

 // This way has blanks to determine the size

Label discountHeader = new Label("Input discount %. Ex. 5% as .05");

 // creates a label for field to accept discount rate

TextField discountField = new TextField(" ");

 // creates a filed to accept discount rate as a floating point number 5% as .05

Label priceLabel = new Label(" ");

// creates a label were original price will be placed. This is blank at first but

 // we create a size (using blank spaces) that will be large enough to handle what

// the program will generate later

Label discountLabel = new Label(" ");

// creates a label were discount price will be placed.

Label newPriceLabel = new Label(" ");

// creates a label were the new price (discount price) will be placed

Button calculate = new Button("Calculate");

 // creates a button that when clicked will perform the appropriate calculations

int xLoc = 40; // determines a starting x location

int yLoc = 05; // determines a starting y location

public void init() // init method

{

add(header);

// add header Label to page

add(priceHeader);

// add priceHeader to page

add(priceField);

// add priceField to page

add(discountHeader);

// add discountHeader to page

add(discountField);

// add discountField to page

add(calculate);

// add calculate button to page

priceField.requestFocus();
// place cursor in priceField

priceField.addActionListener(this); // prepare priceField for action

discountField.addActionListener(this); // prepare discountField for action

calculate.addActionListener(this); // prepare calculate button for action

 add(discountLabel);

// add discountLabel to page

add(priceLabel);

// add priceLabel to page

add(newPriceLabel);

// add newPriceLabel to page

}

public void actionPerformed(ActionEvent e)

{

header.setLocation(xLoc, yLoc); // sets header at the given location

Double tempPrice = Double.valueOf(priceField.getText());

double price = tempPrice.doubleValue();

// The above two lines is the OLD way of getting text from keyboard and

// converting it to Double. In this case it gets the original price

Double tempDiscount = Double.valueOf(discountField.getText());

double discount = tempDiscount.doubleValue();

// The above two lines gets discount price from the keyboard and converts it to

 // double

double newPrice; // declare a newPrice variable

newPrice = price - (discount * price); // calculate discount price

priceLabel.setLocation(30,110); // sets location of priceLabel

priceLabel.setText("Original Price = " + price);

// This prints the original price with a label in the priceLabel label

discountLabel.setLocation(30,140); // sets location of discountLabel

discountLabel.setText("Discount = " + discount * 100 + "%");

// This prints the discount rate with a label in the discountLabel label

newPriceLabel.setLocation(30,170); // sets location of newPriceLabel

newPriceLabel.setText("Discount Price = " + newPrice);

// This prints the new discount price with a label in the newPriceLabel label

}

}

Lesson 40: Searching Arrays
Search Algorithms
A search algorithm is a procedure for locating a specific datum from a collection of data.

For example, suppose you want to find the phone number for Wilson Electric in the phonebook. You would open the phonebook to the business section under W and then look for all the entries that begin with the word Wilson. There would most likely be numerous such entries, so you would then look for the one(s) that end with Electric. This is an example of a search algorithm. Since each section in the phonebook is alphabetized, this is a particularly easy search. Of course, there are numerous types of “collections of data” that one could search. In this section we will focus on searching arrays. Two algorithms, the linear and binary searches, will be studied. We will see that each algorithm has its advantages and disadvantages.

Linear Search
The easiest array search to understand is probably the linear search. This algorithm starts at the beginning of the array and then steps through the elements sequentially until either the desired value is found or the end of the array is reached. For example, suppose we want to find the first occurrence of the number 108 in an array called stocknumber. We can visualize the corresponding integer array as follows:

 0 1 2 3 4 5 6 7

 100
 101
 103
 104
 108
 110
 111
 130

In Java we can initialize the integer array with the desired numbers:

int[] stocknumber = {100,101,103,104,108,110,111,130);
So stocknumber[0]= 100, stocknumber[3]= 104, and stocknumber[7] = 130. If we perform a linear search looking for 108, then we would first check stocknumber[0] which is not equal to 108. So we would then move to stocknumber[1] which is also not equal to 108. We continue until we get to stocknumber[4]= 108. At this point the subscript 4 is returned so we know the position in the array that contains the first occurrence of 108. What would happen if we searched for 140 ? Certainly we would step through the array until we reached the end and not find any occurrence of 140. In the following example we have two arrays (parallel). In the first array we have the stock numbers and in the second array we have the price of the corresponding items of the first array. The class will take an integer number from the keyboard and determine if that number is in the first array (stock number). If it is then the program prints the price of that item (from the second array). Study the program very carefully.

Sample program 40.1:

import java.io.*;

public class LinearSearch

{

public static void main(String[] args) throws IOException

{

BufferedReader indata =

 new BufferedReader(new InputStreamReader(System.in));

String stockStr = new String(); // string to read in stock number

String wait = new String(); // string to wait for any key

int number; // holds stock number to be searched

int index = 0;

 // index into the array

boolean found = false;

 // determines if item is found

 // this is set initially to false

 // so that the loop can be entered

int[] stocknumber = {100,101,103,104,108,110,111,130};

// array of stock numbers

double[] price = { 1.49, 20.33, 0.89, 4.50, 3.33,4.89, 56.33, 0.45};

// array of prices for stock numbers

// Gets stock number from the keyboard and converts the string to int

System.out.println("Please input a stock number (integer)");

stockStr = indata.readLine();

number = Integer.parseInt(stockStr);

// loop to search array for number

while (found == false && index < stocknumber.length)

// if we find a value (setting found to true) or our index is

// past the array than we exit the loop otherwise we continue

{

if (number == stocknumber[index])

 found = true; // item is found

index++; // we increment the index

}

// The index will be one larger than the location of the item (if it is // found) Why?

if (found == true)

System.out.println("The product price is " + price[index -1]);

// do you understand why price[index - 1] is used instead of

 // price[index}

else

System.out.println("Item not found");

 wait = indata.readLine(); // Wait for the user to input

}

}
One advantage of the linear search is its simplicity. It is easy to step sequentially through an array and check each element for a designated value. Another advantage is that the elements of the array do not need to be in any order to implement the algorithm. For example, to search the integer arrays

23
45
12
456
99

12
29
45
23
456

for the integer 99, the linear search will work. The main disadvantage of the linear search is that it is time consuming for large arrays. If the desired piece of data is not in the array, then the search has to check every element of the array before it ends Even if the desired piece of data is in the array, there is a very good chance that a significant portion of the array will need to be checked to find it. So we need a more efficient search algorithm for large arrays.

The Binary Search

A more efficient algorithm for searching an array is the binary search which eliminates half of the array every time it does a check. The drawback is that the data in the array must be ordered to use a binary search. If we are searching an array of integers, then the values stored in the array must be arranged in order from largest to smallest or smallest to largest.

Examples: Consider the following three integer arrays:

1)

19
15
13
13
11
6
-1
-3

2)

19
15
16
13
13
11
-1
-3

3)

-3
 0
 1
 1
 12
 14
 18
 25

The arrays in 1) and 3) could be searched using a binary search. In 1) the values are arranged largest to smallest and in 3) the values are arranged smallest to largest. However, the array in 2) could not be searched using a binary search due to the first three elements of the array: the values of the elements decrease from 19 to 15 but then increase from 15 to 16.

Now that we know which types of arrays are allowed, let us next describe what the binary search actually does. For the sake of argument, let us assume the values of an integer array are arranged from smallest to largest and the integer we are searching for is stored in the variable wanted. We first pick an element in the middle of the array -- let us call it middle. Think about how the number, whether it be even or odd, of elements in the array affects this choice. If middle = wanted, then we are done. Otherwise, wanted must be either greater than or less than middle. If wanted < middle, then since the array is in ascending order we know that wanted must be before middle in the array so we can ignore the second half of the array and search the first half. Likewise, if wanted > middle, we can ignore the first half of the array and search just the second half. In both cases we can immediately eliminate half of the array. Once we have done this, we will choose the middle element of the half that is left over and then repeat the same process until either wanted is found or it is determined that wanted is not in the array.

The following program performs a binary search on an array of integers that are ordered from largest to smallest. Students should think about the logic of this search and how it differs from the argument given above for data ordered smallest to largest.

Sample program 40.2

import java.io.*;

public class BinarySearch

{

private int location; // location in array of item

public void Binary (int[] array, int number)

// This method finds the location in the array of a number searched

 // (-1 if not found) by calling the setBinary method

{

location = setBinary(array, number);

}

public int getLocation() // This method returns the location

{

return location;

}

public int setBinary(int [] array, int number)

{

// This method searches the array and finds if the number is contained

 // in it. If not it returns a -1 otherwise it returns the location in

 // the array

int first = 0; // first element of the list

int last = array.length -1; // last element of the list

int middle; // middle element of the array

int size;

size = array.length; // contains size of the array

while (first <= last)

{

middle = first + (last - first) / 2; // find the middle element

if (array[middle] == number)

 return middle; // a match at location middle

else if (array[middle] < number)

 last = middle -1;

else

first = middle + 1;

}

return -1; // no match so return -1

}

public static void main(String[] args) throws IOException

{

BufferedReader dataIn =

 new BufferedReader(new InputStreamReader(System.in));

String numberStr = new String();

String wait = new String();

int number;

int[] stockNumber = {302, 204, 108, 107, 106, 104};

double[] price = {3.22, 3.44, 20.33, 78.32, 5.78, 9.87};

BinarySearch search1 = new BinarySearch();

System.out.println("Please input the stock number");

numberStr = dataIn.readLine();

number = Integer.parseInt(numberStr);

search1.Binary(stockNumber, number); // call to Binary Search

if (search1.getLocation() == -1)

System.out.println("Item not found");

else

System.out.println("The price is " + price[search1.getLocation()]);

wait = dataIn.readLine();

}

}

Study the above program very carefully.

Lesson 40 Summary
I.
Linear Search
The easiest array search to understand is probably the linear search. This algorithm starts at the beginning of the array and then steps through the elements sequentially until either the desired value is found or the end of the array is reached.

II.
The Binary Search

A more efficient algorithm for searching an array is the binary search which eliminates half of the array every time it does a check. The drawback is that the data in the array must be ordered to use a binary search. If we are searching an array of integers, then the values stored in the array must be arranged in order from largest to smallest or smallest to largest.

Lesson 41: Sort Routines
Swapping values

To exchange the values of two variables, numA and numB we need another variable to temporarily hold a value. Look at the following code:

numA = numB;

 numB = numA;
Why does this NOT exchange the values of A and B.

The solution that allows you to retain and thus swap the values is as follows:

temp = numA;

numA = numB;

numB = temp;
Sorting Algorithms
We have seen how to search an array for a specific piece of data, however, what if we do not like the order in which the data is stored in the array? For example, if a collection of numerical values is not in order, we might like them to be so we can use a binary search to find a particular value. Or, if we have a list of names, we may want them put in alphabetical order. To sort data stored in an array, one uses a sorting algorithm. In this lesson we will consider two such algorithms -- the bubble sort and the selection sort.

The Bubble Sort
The bubble sort is a simple algorithm used to arrange data in either ascending (lowest to highest) or descending (highest to lowest) order. To see how this sort works, let us arrange the array below in ascending order.

 9
 2
 0
 11
 5

 Element 0 Element 1 Element 2 Element 3 Element 4

The bubble sort begins by comparing the first two array elements. If Element 0 > Element 1, which is true in this case, then these two pieces of data are exchanged. The array is now the following:

 2
 9
 0
 11
 5

 Element 0 Element 1 Element 2 Element 3 Element 4
Next elements 1 and 2 are compared. Since Element 1 > Element 2, another exchange occurs:

 2
 0
 9
 11
 5

 Element 0 Element 1 Element 2 Element 3 Element 4
Now elements 2 and 3 are compared. Since 9 < 11, there is no exchange at this step. Next elements 3 and 4 are compared and exchanged:

 2
 0
 9
 5
 11

 Element 0 Element 1 Element 2 Element 3 Element 4
At this point we are at the end of the array. Note that the largest value is now in the last position of the array. Now we go back to the beginning of the array and repeat the entire process over again. Elements 0 and 1 are compared. Since 2 > 0, an exchange occurs:

 0
 2
 9
 5
 11

 Element 0 Element 1 Element 2 Element 3 Element 4
Next elements 1 and 2 are compared. Since 2<9, no swap occurs. However, when we compare elements 2 and 3 we find that 9>5 and so they are exchanged. Since element 4 contains the largest value (from the previous pass), we do not need to make any more comparisons in this pass.

The final result is:

 0
 2
 5
 9
 11

 Element 0 Element 1 Element 2 Element 3 Element 4
The data is now arranged in ascending order and the algorithm terminates. Note that the larger values seem to rise “like bubbles” to the larger positions of the array as the sort progresses.

We just saw in the previous example how the first pass through the array positioned the largest value at the end of the array. This is always the case. Likewise, the second pass will always position the second to largest value in the second position from the end of the array. The pattern continues for the third pass, fourth pass, and so on until the array is fully sorted. Subsequent passes have one less array element to check then their immediate predecessor.

Sample Program 41.1:

import java.io.*; // for input and output

public class BubbleSort

{

private int size; // Number of elements in array

private BubbleSort() // constructor that sets the size of array to 0

{

size = 0;

}

private BubbleSort(int num) // another constructor that sets size at

{

 // declaration

size = num;

}

public void setSize(int x) // method that sets size (not constructor)

{

size = x;

}

public void sortIt(int [] array) // method that sorts the array

{

int swap, temp; // swap is used to indicate if a swap occurred

// temp holds value during a swap

int bottom = size - 1; // bottom will be one less than the

// number of elements to be checked for swapping

do

{

swap = 0; // swap is set to 0 through each loop

 // if no swap occurs, the loop will exit

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1]) // test for swap

{

temp = array[count];

array[count] = array[count+1];

array[count + 1] = temp;

swap = 1; // indicates that a swap occurred

}

}

bottom--;

// bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

}while (swap != 0); // loop repeats until a pass through the

 // the array with no swaps occurs

} // end of sortIt

public void displayArray(int [] array) // this method will display array

{

for (int count = 0; count < size; count++)

System.out.println(array[count] + " ");

}

public static void main(String[] args) throws IOException

{

// This will get numbers from the keyboard and

// store them in an array called stockNumber.

// An object is created that will call class methods

// to sort the numbers

BufferedReader dataIn =

new BufferedReader(new InputStreamReader(System.in));

int numberOfElements = 0; // counts the number of elements in

 // the array

String numIdstr; // String of number of elements read from keyboard

int numId; // an individual stock number

int [] stockNumber = new int[50];// an array than can hold up to 50 numbers

BubbleSort sort1 = new BubbleSort(); // create an object

System.out.println("Please input a stock number");

System.out.println("Input a -99 to stop");

numIdstr = dataIn.readLine();

numId = Integer.parseInt(numIdstr);

while (numId != -99)

{

stockNumber[numberOfElements] = numId; // puts number in the array

numberOfElements++;

System.out.println("Please input a stock number");

System.out.println("Input a -99 to stop");

numIdstr = dataIn.readLine();

 numId = Integer.parseInt(numIdstr);

}

// numberOfElements is the size of the array used.

// Why can’t the length feature be used to determine the size?

// Because that will indicate the true size of the array

// (50 in this case) but not the number of actual elements used

sort1.setSize(numberOfElements); // sets private element size to

 // numberOfElements

sort1.sortIt(stockNumber); // calls method to sort array

System.out.println("Here are the stock numbers in order ");

sort1.displayArray(stockNumber); // calls method to display sorted array

System.out.println("Hit any key to exit");

numIdstr = dataIn.readLine();

 }

}

Lesson 41 Summary
I.
Swapping values

temp = numA;

numA = numB;

numB = temp;
II
Bubble Sort
public void sortIt(int [] array) // method that sorts the array

{

int swap, temp; // swap is used to indicate if a swap occurred

// temp holds value during a swap

int bottom = size - 1; // bottom will be one less than the

// number of elements to be checked for swapping

do

{

swap = 0; // swap is set to 0 through each loop

 // if no swap occurs, the loop will exit

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1]) // test for swap

{

temp = array[count];

array[count] = array[count+1];

array[count + 1] = temp;

swap = 1; // indicates that a swap occurred

}

}

bottom--;

// bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

}while (swap != 0); // loop repeats until a pass through the

 // the array with no swaps occurs

}

Lesson 42: Sorting Arrays of Objects

Array of objects can be sorted in the same way that arrays of primitive types are sorted. You will sort objects on a particular field of the object.

Example:

public class StudentSort

{

private int studId;

private double gpa;

public StudentSort (int id, double grade)

{

studId = id;

gpa = grade;

 }

public int getStudId()

{

return studId;

 }

public double getGpa()

{

return gpa;

}

public void setGpa(double grade)

{

gpa = grade;

}

}
An array of objects can be passed and its length to a sort routine method that is prepared to receive Student objects.

public static void bubbleSort(StudentSort[] array, int size)

 {

int swap; // swap is used to indicate if a swap occurred

StudentSort temp;

// temp holds an object during a swap

int bottom = size - 1; // bottom will be one less than the

// number of elements to be checked for swapping

do

{

swap = 0; // swap is set to 0 through each loop

 // if no swap occurs, the loop will exit

for (int count = 0; count < bottom; count++)

{

if (array[count].getStudId > array[count+1].getSutdId)

 // test for swap

{

temp = array[count];

array[count] = array[count+1];

array[count + 1] = temp;

swap = 1; // indicates that a swap occurred

}

}

bottom--;

// bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

}while (swap != 0); // loop repeats until a pass through the

 // the array with no swaps occurs

}

Notice the few differences of this sort routine from sort routines of primitive data types:

1)
This method receives an array of type Student

2)
The temp variable used for swapping is of type Student

3)
The comparison for swapping uses the getStudId() method to compare the student id for each Student object.

You then create an array of type StudentSort such as the following:

StudentSort[] studentArray = new StudentSort[50];

This statement reserves enough computer memory for 50 StudentSort objects. It does Not, however, actually construct those objects. Instead you must call the constructors for each one used. If you are getting student information from the keyboard, the following code could be used.

StudentSort[] studentArray = new StudentSort[50];

 // an array of objects that can hold up to 50

 // student objects

System.out.println("Please input a student Id number");

System.out.println("Input a -99 to stop");

studIdstr = dataIn.readLine();

studId = Integer.parseInt(studIdstr);

while (studId != -99)

{

studentArray[numberOfElements]= new StudentSort(studId, 0.0);
 // puts student id numbers in the array

 // sets each gpa (of all objects) to 0.0

numberOfElements++;

System.out.println("Please input a student number");

System.out.println("Input a -99 to stop");

studIdstr = dataIn.readLine();

studId = Integer.parseInt(studIdstr);

}
A complete program (that creates the array of objects and sorts them is given below.

import java.io.*;

public class StudentSort

{

private int studId;

private double gpa;

public StudentSort()

{

studId = 0;

gpa = 0;

}

public StudentSort (int id, double grade)

{

 studId = id;

 gpa = grade;

 }

public int getStudId()

{

 return studId;

 }

public double getGpa()

{

 return gpa;

}

public void setId(int id)

{

 studId = id;

}

public void setGpa(double grade)

{

gpa = grade;

}

public static void main(String[] args) throws IOException

{

// This will get ids from the keyboard and

// store them in an array called studentArray.

// An object is created that will call class methods

// to sort the studentIDs

BufferedReader dataIn =

new BufferedReader(new InputStreamReader(System.in));

int numberOfElements = 0; // counts the number of elements in

 // the array

String studIdstr; // String of studId number read from keyboard

int studId; // an individual studId number

double studGpa; // an individual student gpa

StudentSort[] studentArray = new StudentSort[50];

 // an array of objects that can hold up to 50

 // student objects

System.out.println("Please input a student Id number");

System.out.println("Input a -99 to stop");

studIdstr = dataIn.readLine();

studId = Integer.parseInt(studIdstr);

while (studId != -99)

{

studentArray[numberOfElements]= new StudentSort(studId, 0.0);

 // puts student id numbers in the array

 // sets each gpa (of all objects) to 0.0

numberOfElements++;

System.out.println("Please input a student number");

System.out.println("Input a -99 to stop");

studIdstr = dataIn.readLine();

studId = Integer.parseInt(studIdstr);

}

 // numberOfElements is the size of the array used.

 bubbleSort(studentArray, numberOfElements);

 System.out.println("Here are the student id numbers in order ");

 for (int count = 0; count < numberOfElements; count++)

 {

System.out.println(studentArray[count].getStudId());

 }

 System.out.println("Hit any key to exit");

 studIdstr = dataIn.readLine();

 }

public static void bubbleSort(StudentSort[] array, int size)

 {

int swap; // swap is used to indicate if a swap occurred

 StudentSort temp; // temp holds an object during a swap

int bottom = size - 1; // bottom will be one less than the

 // number of elements to be checked for swapping

do

{

swap = 0; // swap is set to 0 through each loop

 // if no swap occurs, the loop will exit

for (int count = 0; count < bottom; count++)

{

if (array[count].getStudId() > array[count+1].getStudId())

 // test for swap

{

temp = array[count];

array[count] = array[count+1];

array[count + 1] = temp;

swap = 1; // indicates that a swap occurred

}

}

bottom--;

// bottom is decremented by 1 since each pass through

 // the array adds one more value that is set in order

}while (swap != 0); // loop repeats until a pass through the

 // the array with no swaps occurs

}

}

Lesson 42 Summary
I.
Array of Objects can be created and sorted on a particular field.

II.
Each element of the array of objects have to be constructed.

Suppose StudentSort is an object that has 2 data fields: integer studId & double gpa.

StudentSort[] studentArray = new StudentSort[50];
This statement reserves memory space for 50 objects of StudentSort but does NOT construct those objects. Each object must be created individually (most likely in a loop).

Example:

for (x = 0; x < 50; x++)

studentArray[x] = new StudentSort(valueof studId, value of gpa);
III.
Bubble Sort of array of objects

public static void bubbleSort(StudentSort[] array, int size)

 {

int swap; // swap is used to indicate if a swap occurred

StudentSort temp;

// temp holds an object during a swap

int bottom = size - 1; // bottom will be one less than the

// number of elements to be checked for swapping

do

{

swap = 0; // swap is set to 0 through each loop

 // if no swap occurs, the loop will exit

for (int count = 0; count < bottom; count++)

{

if (array[count].getStudId > array[count+1].getSutdId)

 // test for swap

{

temp = array[count];

array[count] = array[count+1];

array[count + 1] = temp;

swap = 1; // indicates that a swap occurred

}

}

bottom--;

// bottom is decremented by 1 since each pass through

// the array adds one more value that is set in order

}while (swap != 0); // loop repeats until a pass through the

 // the array with no swaps occurs

}

Lab 1

Introduction to Programming

and the Translation Process
Purpose
1.
To become familiar with the login process and the Java environment used in the lab.

2.
To learn, recognize and correct the three types of computer errors:

syntax errors

run time errors

logic errors

3.
To be able to build and run existing programs

4.
To enter code and run a simple program from scratch

Procedure
A.
Students should read Lessons 1 through 3 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

C.
In the lab, students should complete labs 1.1 through 1.4 in sequence.

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 1-3
 10 min.

LESSON 1A

 Lab 1.1

Opening, compiling and running your first program
Read Lessons 1-3
 15 min.

 Lab 1.2

Compiling a program with a syntax error
Familiar with the environment
 15 min.

 Lab 1.3

Running a program with a run time error
Understanding of the three types of errors
 15 min.

LESSON 1B
 Lab 1.4

Writing your first program
Understanding of errors
 20 min.

 Lab 1.5

Entering a new program and working with logic errors
Finished labs 1.1 through 1.4
 30 min.

Pre-Lab 1 Writing Assignment
Fill in the blank questions
1.
Compilers detect ___________________________ errors.

2.
Usually the most difficult errors to correct are ____________errors.

3.
All Java programs are done within the confines of a ____________.

4.
All Java applications contain the __________________method.

5.
Instructions in Java end with a(n) ______________________

6.
________are mini-Java programs that can be downloaded and executed as part of a Web page.

7.
A Java program is compiled into what is called _________ rather than to the machine language of the computer.

8.
A ____________is a memory location whose value can change.

9.
A Java program is translated into bytecode by a(n) _________________.

10.
 Java bytecode is translated into machine code by a(n) _______________.

Lesson 1A
Appendix B of your notes gives some simple instructions for creating and running a Java program in an Integrated development environment called Eclipse. Your instructor will tell you how to access this software. If you are using a different environment, your instructor will give you a set of instructions for that particular software. This first lab assumes Eclipse and the use of Notepad++ and gives instructions in working with them. Keep in mind that future labs will not give specific instructions on the IDE. You will be expected to understand the environment you work in. You can also refer to Appendix B.

Lab 1.1
Opening, compiling and running your first program
Exercise 1:
Logon to your system and get into the Eclipse environment based on your professor’s instructions.

Exercise 2:
 In Eclipse you must first create a project. Click on File (top left corner) –> New–>Java Project

Exercise 3:
 A new window pops up. We will put all of this lab’s exercises in the same project. Type in LAB1 in the box that calls for the project’s name. Then click the Finish button at the bottom

Exercise 4:
 Highlight LAB1 in the left window and then right click to see a new menu. Click New–>class.

 Exercise 5: In the new window in the section that calls for the class name type First. Then click the finish button at the bottom.

 Exercise 6: The middle window now starts the program for you by giving this.

public class First {

 }

 Exercise 7: Go to the K drive–>Henson–>COSC–>COSC 117–>DeFino–> COSC 117 Labs–> Lab 1 You will see First.java. Open this in notepad++.

Notepad++ allows you to write or edit files that can be used as Java programs. In this case you will not need to edit it. Just highlight everything and then copy (Ctrl C).

 Exercise 8: Paste this into the program. The window that has

 public class First {

 }

You will override what is there since this is a complete program.

// This is the first program that just writes out a simple message

public class First

{

public static void main(String[] args)

{

System.out.println("Now is the time for all good men");

System.out.println("to come to the aid of their party");

}

}

 Exercise 9: Now save the file by clicking on File–>Save

 Exercise 10: To run the program click Run–>run

You should see the two sentences in the bottom window.

 Now is the time for all good men

 to come to the aid of their party

Lab 1.2
Compiling a program with a syntax error
Exercise 1:
 Add another class to the Lab1 project and call it Semiprob. Bring this program in from the K drive just as you did in Lab 1.1. Save it.

Exercise 2:
 You will notice some red marks which indicate errors.

 Exercise 3: Try running the program. Run–>run It gives a warning window. Click proceed.

Exercise 4: In the bottom window it says what is wrong. There is a missing semicolon.

System.out.println(“Today is a great day for lab”)

Most syntax errors are not as easy to spot and correct as this one.

Exercise 5:
 Fix the error save it and run it again

The code of Semiprob is as follows:

// This program demonstrates a compile error

public class Semiprob

{

public static void main(String[] args)

{

int number;

System.out.println("Today is a great day for Lab")

System.out.println("Let's start off by printing a number");

number=10;

System.out.print("The number is ");

System.out.println(number);

}

}

Lab 1.3
Running a program with a run time error
Exercise 1:
 Highlight Lab1 and add a new class and call it Runprob.

Exercise 2:
 Bring in the program Runprob from the K drive into Eclipse and save it.

Exercise 3:
Run the program. You should now see the first of several run time errors. There was no syntax or grammatical error in the program; however, just like commanding someone to break a law of nature, the program is asking the computer to break the law of math by dividing by zero. It cannot be done. On some installations, you may see this as output that looks very strange. In eclipse it says that half the number is Infinity. Correct this program by having the code divide by 2 instead of 0.

Exercise 4:
 Save the program and Re-run it.

The code of Runprob is as follows:

//This program will take a number and divide it by 2

public class Runprob

{

public static void main(String[] args)

{

float number = 10;

int divider;

divider = 0;

System.out.println("Hi there");

System.out.print("Here is the number ");

System.out.println(number);

number = number / divider;

System.out.print("Half the number is ");

System.out.println(number);

}

}

Lesson 1B
Lab 1.4
Writing your first program

It is now time for you to write from scratch your very first program. You will not have to bring in any code but must write the complete code yourself. You can create a new class within Lab1.

Exercise 1:
Write a Java program that will print “Hello World!” to the screen.

Exercise 2:
Compile the program. If you get compile errors, try to fix them and re-compile until you are syntax error free.

Exercise 3:
Run the program. Do you get what you expect?

Lab 1.5
Entering a new program and working with logic errors.
Exercise 1:
 Create a new class called Logicprob within Lab 1 and then type in the following code. You are not expected to understand how it works; just copy it just as it is shown.

// This program takes two values and swaps

// their values

public class Logicprob

{

public static void main(String[] args)

{

float firstnumber = 10;

float secondnumber = 20;

System.out.print("The first number is ");

System.out.println(firstnumber);

System.out.print("The second number is ");

System.out.println(secondnumber);

// Now we swap the numbers

firstnumber = secondnumber;

secondnumber = firstnumber;

System.out.print("After swapping, the first number is ");

System.out.println(firstnumber);

System.out.print("The second number is ");

System.out.println(secondnumber);

}

}

Exercise 2:
 Save this and run it.

Exercise 3:
 If you have any compile errors, go back and check your work. Make sure everything you typed is exactly the way it is in the book.

Exercise 4:
When you have no syntax error, run the program. What is printed?

Exercise 5:
This program has no syntax or run time errors, but it certainly has a logic error. This logic error may not be easy to find. Most logic errors create a challenge for the programmer. You instructor may ask you not to worry about finding and correcting the problem at this time.

Lab 2

Working with Variables and Arithmetic Operations
Purpose
1.
Show the use of memory in programming

2.
Work with various data types

3.
To work with assigning values to variables and constants

4.
To demonstrate the use of arithmetic operators

Procedure
A.
Students should read Lessons 4 through 6 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 4 - 6
 10 min.

LESSON 2A

 Lab 2.1

Review of output statements

 15 min.

 Lab 2.2

Working with variables and arithmetic operators
Understanding of variables & operators
 35 min.

LESSON 2B
 Lab 2.3

Working with different data types
Understanding of int, float, char data types
 20 min.

 Lab 2.4

Student Generated Code: Rectangle area and perimeter
Finished labs 2.1 through 2.3
 30 min.

Pre-Lab2 Writing Assignment
Fill in the blank questions
1.
A _____________________ is a memory location whose value cannot change during the execution of the program.

2.
__________________ is a data type that holds only numbers with no fractional component.

(More than one correct answer)

3.
__________________is a data type that holds number with fractional components. (More than one correct answer)

4.
A _______________ is a memory location whose value can change during the execution of the program.

5.
// or /* in Java indicates the start of a _______________

6.
_____________ data types only have two values: true and false.

7.
The ______________ modifier allows the data, or method to be used anywhere within the class.

8.
A ____________ is a collection of statements that performs a sequence of operations.

9.
A ___________ is the blueprint for an object.

10.
The _________________ is the escape sequence for carriage return.

Lesson 2A
Lab 2.1
Review of output statements.

Exercise1:
From now on you will be expected to know how to create projects and classes for Java program in your environment. The labs will just give directions on what is to be done. You will not be reminded of this each time.

Lab 2 exercises can be done in the same project called Lab 2. Remember to create the project and then add classes for the exercises. Retrieve program Name.java from the Lab2 folder.

Fill in the blanks so that the program will do the following:

Write your first and last name on one line.

Write your address on the next line (Recall the difference between println and print)

Write your city, state and zip on the next line.

Write your telephone number on the next line.

Compile and run the program

Example:
Charlie Wickerbocker

123 Markadella Lane

Fruitland, Md. 55503

489-555-5555

The code for Name.java is as follows:

// This program will print name address phone number

public class Name

{

 public static void main(String[] args)

 {

 // Fill in this space to write your first and last name

 // Fill in this space to write your address (on new line)

 // Fill in this space to write your city, state and zip (on new line)

 // Fill in this space to write your telephone number (on new line)
 }

}
Exercise 2:
Change the program so that three blank lines separate the telephone number from the address. Compile and run the program.

Exercise 3:
Change the program so that the following (but with your name and address) is printed. Try to get the spacing just like the example. Compile and run the program.

 Programmer: Charlie Wickerbocker

 123 Markadella Lane

 Fruitland, Md. 55503

 Telephone:
 489-555-5555

Lab 2.2
Working with variables and arithmetic operators

Exercise 1:
Bring in the program Circlearea.java from the Lab2 folder.

The code of Circlearea.jave is as follows:

// This program will output the circumference and area

// of a circle with a given radius

public class Circlearea

{

 static final double PI = 3.14; // declarations of constants

 static final double RADIUS = 5.4;

 public static void main(String[] args)

 {

 __________ areaOfCircle; // declaration of areaOfCircle

 double circumference; // declaration of circumference

 areaOfCircle = ___________; // find the area

 // Fill in the statement that will calculate circumference and assign

 // that value to the circumference variable

 // Fill in the output statement that will output

 // (with description) the circumference

 // Fill in the output statement that will output

 // (with description) the area of the circle
 }

}

Exercise 2:
Fill in the blanks and the areas in bold so that the output will produce the following:

The circumference of the circle is 33.912000000000006

The area of the circle is 91.56240000000003

Exercise 3:
Change the data type of circumference from double to int. What happens when you compile the program.

Lesson 2B

Lab 2.3
Working with different data types
Exercise 1:
Bring in the program Types.java from Folder Lab2.

The code of Types.java is as follows:

// This program demonstrates the various data types

public class Types

{

 static final char BESTRATING = 'A'; // declaration of constants

 static final int HIGHESTGRADE = 100;

 public static void main(String[] args)

 {

char letterGrade; // declaring letterGrade as char

int numericGrade; // declaring numericGrade as int

boolean passing; // declaring passing as boolean

 // Fill in the code to do the following:

 // assign the value of 90 to numericGrade

 // assign a grade of B to letterGrade

 // assign a value of true to passing

 // Fill in the code to output the numericGrade (with description)

 // Fill in the code to output the letterGrade (with descirption)

 // Fill in the code to print to screen that the grade passing grade is true

 }

}
Notice that this program has the variables (letterGrade, numericGrade and passing) declared in the class definition rather than in main. If we want main to be able to access these variables we include the static statement before their data type. Variables are declared within main without the static modifier. Where variables, constants etc are declared is discussed later in the course.

Exercise 2:
Fill in the code in bold so that the following output will be generated.

The value of the numeric grade is 90

The letter grade is B

The passing grade is true

Exercise 3:
The above program did not use the constants declared in the class. Is it possible to change the values of HIGHESTGRADE and BESTRATING by adding code within main? Why or why not?

Lab 2.4
Student Generated Code: Rectangle area and perimeter
Exercise 1:
Using Lab 2.2 as an example, develop a program that will determine the area and perimeter of a rectangle. The length and width will be given as constants. (LENGTH = 8 WIDTH = 3)

Exercise 2:
Compile and run your program. Continue to work until you get the following output.

The area of the rectangle is 24

The perimeter of the rectangle is 22

Lab 3

Java Basics
Purpose
1.
Show the use of the Scanner class to input data

2.
Show the use of relational operators and the conditional statement

3.
Show how to format output

4.
Show how to use loops to solve problems

Procedure
A.
Students should read Lessons 7 through 9 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 7 - 9
 10 min.

LESSON 3A

 Lab 3.1

Working with Data from the keyboard and formatted output
Understanding the Scanner Class and how to input data from the keyboard
 10min.

 Lab 3.2

Working with conditional statements
Understanding the use of the if and if else statements
 15 min.

LESSON 3B
 Lab 3.3

Working with loops
Understanding loops
 15 min.

 Lab 3.4

Student Generated Code:
Finished labs 3.1 through 3.3
 50 min.

Pre-Lab3 Writing Assignment
Fill in the blank questions
1.
The largest floating point number can be stored in Java using the ________ data type

2.
We must import the Scanner class by using import ______.______._______;

3.
We create a keyboard object called kbd from the Scanner class by writing

Scanner kbd= ________________________;

4.
We use the ___________________statement to have formatted output.

5.
Write the statement that will print the floating point variables pay and tax each having a $ before the value and having it print to two decimal places.

6.
The logical symbol for AND in Java is _________.

7.
Equality in Java is represented by _____________.

8.
Data the is used to terminate a while loop is called ___________ value (or data).

9.
The six fundamental instructions are

10.
A _________ is a variable that is incremented or decremented each time in a loop.

11.
A ___________is a human or computer generated look at the contents of various variables after each instruction is executed.

12.
A loop that fails to end is called a(n) ___________________________.

13.
The condition tested in an if statement is of what data type? ____________________.

14.
 List the instruction that will both declare and read in a float data value of a variable called source. Assume that the Scanner has been imported and an object called keyboard has been created from it as an input stream from the keyboard.

15. In equality is represented in Java as ____________________.

Lesson 3A

Lesson 3.1Working with Data from the keyboard and formatted output
Retrieve class KeyboardData from the Lab3 folder. The code is as follows

/* This program will calculate the sales tax

 * of an item. The cost of the item will be read in
 * from the keyboard. The sales tax is a constant 6%
 * The tax plus the total cost (including tax) of the item
 * will be printed to the screen.
 *
 * Programmer: //Print your Name
 * Date: // Print the date
 */
// fill in the code that will import the Scanner Class
public class KeyboardData {

 // Write the declaration of a constant called STATETAX that is 6%

public static void main(String[] args)

{

// write the statement that creates an object called kbd from the Scanner class

// declare double variables cost and tax

System.out.println("Please input the cost of the item");

// Bring in cost from the keyboard

// Determine the tax of the item

// add this tax to the cost

// Give the formatted output of the tax and total cost of the item
}

}
Sample Run.

Please input the cost of the item

14.78
The tax is $ 0.89

The total cost is $ 15.67

Exercise 1: After bringing the code from the K drive write the program (see the comments in the code) that will allow the user to impute a cost and then have the program determine the tax (based on 6% sales tax). The program should send the tax and the total cost to the screen. See sample run.

Lab 3.2 Working with conditional statements

You have heard that one year of a dog’s life is 7 years in human years. Actually the formula for conversion is a bit more complex. For the first two years a dog year is 11 human years. After that it is 4 years. This program will take the age of a dog from the keyboard and determine it’s age in human years. You will need an if () else conditional statement. If the dog is two years old or younger is one condition. If the dog is older than 2 it will be a different calculation.

Exercise 1: Bring in DogYears.java from the Lab 3 folder. The code is as follows. Fill in the code requested by the comments in bold so that produces a sample run.

import java.util.Scanner;

public class DogYears {

/** This program will read the age of a dog and then output

 * that age in human years. The formula used is:

 * that each year for the first two years is 11 years

 * The rest of the years are 4 years for each year

 * Programmer: Print Your Name

 */

public static void main(String[] args) {

Scanner keyboard=new Scanner (System.in);

double humanAge; // age of dog in human years

double dogAge; // true age of dog

// fill in the statements that will ask for the dogs current age

// fill in the if else statement that will determine the age of the dog in human years

// fill in the write statement that will print the dogs age in human years

}

}
Note: Determining the dog’s age if he/she is older than 2, one has to consider the age at 2 in human terms plus the remaining years of the dog (not counting the first 2 years) which is multiplied by 4

Sample run

How old is your dog1.5

You dog is 16.5 in human years
Sample run2

How old is your dog20

You dog is 94.0 in human years

 Lab 3.3
Now we want to write a program that will allow the user to input more than one age of a dog. We don’t know how many he or she will input so we will use a sentinel data (any negative number) to stop the loop.

Alter the program you wrote in Lab 3.2 to now allow multiple inputs of dog’s ages.

Sample input 1

How old is your dog, Put a negative number to stop 13

You dog is 66 in human years

How old is your dog, Put a negative number to stop 4

You dog is 30 in human years

How old is your dog, Put a negative number to stop -4
Note: You will need to prime the read. Which means getting information into the variables before the loop.

Example Algorithm

Write (Please input the dog’s age put a negative number to stop)

Read (dogAge)

while (dogAge >=0)

 {

 Instructions to find the dog’s age in human terms

Write out dog’s age in human terms

Write (Please input the dog’s age put a negative number to stop)

Read (dogAge)

}

Lab 3B
Option 1: Write a program that will read in hourly pay rate and hours worked and will calculate the gross pay. Hours over 40 have a pay rate of 1.5 times the hourly rate.

Sample run

Please input the hours worked

35
Please input the pay rate

10
Your gross pay is $350.00
Sample run 2

Please input the hours worked

58
Please input the pay rate

10
Your gross pay is $670.00
Option 2: Write a program that will read in the number of temperatures to be read in. The program will then read in that many temperatures and calculate the average. The average will be printed with formatted output.

Sample run

Please input the number of temperatures to be read

3
Please input a temperature

68
Please input a temperature

78
Please input a temperature

52
The average temperature is 66.00
Lab 4

Expression and data type conversions
Purpose
1.
Show how to convert expressions to Java statement

2.
Work with Math class methods

3.
Work with Methods without arguments

4.
Work with Methods with one argument

5.
Demonstrate data type conversion

Procedure
A.
Students should read Lessons 10 through 12 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 10 - 12
 10 min.

LESSON 4A

 Lab 4.1

Working with arithmetic operations and Math class methods
Understanding of arithmetic operations and Math class methods pow and sqrt
 15 min.

 Lab 4.2

Working with data conversions
Understanding of type casting
 15 min.

 Lab 4.3

Working with Methods without arguments
Understanding of Methods
 20 min.

LESSON 4B
 Lab 4.4

Student Generated Code:
Finished labs 4.1 through 4.3
 50 min.

Pre-Lab 4 Writing Assignment
Fill in the blank questions
1.
Automatic data conversion done by the compiler is called ____________ type coercion.

2.
Explicit conversion done by the programmer is called type ____________.

3.
The mathematical expression a(b + c) * d2 is written as the following Java code:

__

4.
A method must consist of a header (declaration), a set of curly brackets and a(n) __________

5.
A method declaration contains optional modifiers and an optional list of ________________.

6.
Most methods contain the _________________access modifier.

7.
A method that returns no values is said to have the _______________ return type.

8.
A(n) _____________ parameter is an argument in a method’s declaration.

9.
A(n)_____________ parameter is an argument in the call to the method.

10.
The call to a method _______ (must or must not) give the data type before its actual parameter whereas the method declaration (must or must not) give the data type before its formal parameter.

Lesson 4A

Lesson 4.1
Working with arithmetic operations and Math class methods
Write a program that will do the following

/* This program will take the value of two sides of a triangle and then
 * determine the size of the hypotenuse in order to make it a right triangle.

 * The main program will just call a void method (findHypot) The findHpot method

 * will read in the two sides, find and print the hypotenuse length

 * The hypotenuse should be formatted output to 2 decimal places.
*/

Sample input

Please input the length of the first side of the triangle 4

Please input the length of the second side of the triangle 6
The sides of the right triangle are 4.0 and 6.0

The hypotenuse is 7.21
NOTE: This program uses two methods. The main method does nothing more than call the findHypot method.

Lab 4.2
Working with data conversions

Bring in the program batavg.java from the Lab 4 folder.

Exercise 1: The following is the source code:

// This program will determine the batting average of a player

// The number of hits and at bats are set internally in the program

// PLACE YOUR NAME HERE

public class BatAverage

{

 static final int AT_BAT = 421;

 static final in HITS = 123;

 public static void main(String[] args)

 {

int batavg;

batavg = HITS / AT_BAT; //an assignment statement

System.out.println(“The batting average is “ + batavg);

}

Run this program and record the results. The batting average is ___________.

Exercise 2:
There is a logical error in this program centering around data types. Does changing the data type of batavg from int to float solve the problem? Make that change and run the program again and record the result.

The batting average is _______________.

Exercise 3:
Continue to work with this program until you get the correct result.

The correct result should be 0.2921615201900237

Lab 4.3
Working with Methods without arguments

Retrieve program CostWithTax.java from the Lab4 folder. The code is as follows:

import java.util.Scanner;

/* This program reads in the cost of an item from the keyboard and then sends this cost to a method that

 * will add 6% tax to the cost and print the total cost of the item

 *

 * Programmer: Your name

 * Lab 4.3

 * Date: Current Date

 */

public class CostWithTax

{

 public static void main(String[] args)

 {

Scanner kbd=new Scanner(System.in);

System.out.print("Please input the cost of the item ");

double cost=kbd.nextDouble();

findTax(cost);

 }

 // Fill in the findTax method heading and the body of the method that will take one argument of

 //type double which is the cost of an item and add 6% to that cost. It will then print the total cost

 }

Lesson 4B
Lab 4.4
Student Generated Code

Option1:
Write a class that will take an undetermined number of grades from the keyboard and find the average of those grades and print that average to the screen. The calculation and printing should be done in a method called by main but not in main itself. The sentinel data should be any negative number. The average should be formatted to 2 decimal places.

Sample run:

Please input a grade 97

Please input a grade 98.3

Please input a grade 95

Please input a grade -3

The average of the 3 grades is 96.77
Option 2:
The Woody furniture company sells the following three styles of chairs:

Style

Price Per Chair

American Colonial

$ 85.00

Modern

$ 57.50

French Classical

$127.75

Write a program that will find the total dollar sales for the total number of American Colonial chairs sold, the total number of Modern and the total number of French Classical chairs. It will print the total dollar sales of each style as well as the total sales of all chairs. The number of each style is read in from the keyboard. The main program should call another method to calculate and print everything.

Sample run:

Please input the number of American Colonial chairs sold 20

Please input the number of Modern chairs sold 15

Please input the number of French Classical chairs sold 5

The total sales of American Colonial chairs $1700.00

The total sales of Modern chairs $862.50

The total sales of French Classical chairs $638.75

The total sales of all chairs $3201.25
Lab 5

Working with Methods
Purpose
1.
Show the use of void methods with multiple arguments

2.
Show the use of value returning methods

3.
Show the use of strings

Procedure
A.
Students should read Lessons 13 through 15 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 13 - 15
 10 min.

LESSON 5A

 Lab 5.1

Working with a Method with a string argument
Understanding of Method arguments and strings
 15 min.

 Lab 5.2

Working with Value returning Methods
Understanding of Value returning Methods
 30 min.

LESSON 4B
 Lab 5.3

Working with Methods with multiple arguments
Understanding of arguments
 20 min.

 Lab 5.4

Student Generated Code:
Finished labs 5.1 through 5.3
 30 min.

Pre-Lab 5 Writing Assignment
Fill in the blank questions
1.
Value returning functions replace the word void with the _____________ of the value that is returned.

2.
A value returning method MUST have a(n)___________________ statement.

3.
A method type is the same as the data type of the value that it _____________ to the calling method.

4.
Multiple arguments are listed within the parenthesis of the call separated by _____________

5.
Actual parameters (arguments in the call) and formal parameters (arguments in the method heading) are matched in a ______________ correspondence.

6.
The values of the actual arguments are passed to the corresponding formal parameters. This is called pass by _____________.

7.
A class called ____________ allows many characters to be stored in one location

8.
Arguments sent to a method must match in both _________ and ________ the parameters listed in the method declaration.

callAvg(totalScore, numOfScore);

public static void callAvg(double sum, int totalAmount)

9.
totalScore (in the above example) is a(n) _________ or ____________parameter

10.
numOfScore (in the above example) must be an ___________data type.
Lab 5A
Lab 5.1
Working with a Method with a string argument
Retrieve class NewProverb.java from the Lab5folder. The code is as follows:

/* This program will output the following proverb

 * "Now is the time for all good men to come to the aid of their "

 * The last word will be passed to a method as an argument

 *
 * Programmer: YOUR NAME

 * Lab 5.1

 * Date: The date

 */
public class NewProverb

{

 public static void main(String[] args)

 {

 String wordChoice;

 wordChoice = “party”;

 proverb(wordChoice);

 wordChoice = “country”;

 proverb(wordChoice);

 }

 // Fill in the proverb method heading and body which prints to the screen

 // the words “Now is the time for all good men to come to the aid of their “

 // The last word printed is the argument sent to the method.
}

Exercise 1:
Some people know this proverb as “Now is the time for all good men to come to the aid of their country” while others know it as “Now is the time for all good men to come to the aid of their party”. This class will print it both ways by making two calls to the proverb method.

Lab 5.2
Working with Functions (Value returning Methods)
Retrieve class ConvertMoney.java from the Lab5 folder. The code is as follows:

 /* This program will get the number of dollars from

 * the keyboard. It will then convert that amount to

 * both euros and pesos.

 *

 * Programmer: YOUR NAME

 * Lab 5.2

 * Date: The date

 */

import java.util.Scanner;

public class ConvertMoney

{

 public static void main(String[] args)

 {

 double money;

 // Fill in the necessary code to read data from a keyboard

 // Fill in the necessary code to read the value of money from the keyboard

 // Be sure to give a prompt to the user

 // Fill in the code that will call the function EuroConversion with the

 // argument money and print the return value to the screen with proper

 // description.

 // Fill in the code that will call the function PesosConversion with the

 // argument money and print the return value to the screen with proper

 // description.

 }

 // Develop the euroConversion method that returns the lire equivalent

 // of the dollar amount passed as an argument. 1 dollar = .7 Euros

 // Develop the pesosConversion method that returns the pesos equivalent

 // of the dollar amount passed as an argument. 1 dollar = 9.815 pesos
}

 Exercise 1:
Fill in the code requested by the comments in bold so that the following is printed in formatted output (2 places to the right of the decimal point) to the screen:

Please input the number of dollars to be converted 79.83

$ 79.83 is converted to 55.88 Euros

$ 79.83 is converted to 783.53 pesos

Lesson 5B
Lab 5.3
Working with Methods with multiple arguments
Retrieve class PayCheck.java from the Lab5 folder.

/* This program takes two numbers (pay rte & hours) and multiplies

 * them to get the gross pay. It then calculates the net pay by

 * subtracting 15%

 *

 * Programmer: YOUR NAME

 * Lab 5.3

 * Date: The date

 */

import java.util.Scanner;

public class Paycheck2

{

 public static void main(String[] args)

 {

 double payRate ;

 double grossPay;

 double netPay;

 double hours;

 System.out.println ("Welcome to the Pay Roll Program");

 description(); // Call to description method

// Give the code necessary to input both the hours worked and pay rate

//from the keyboard be sure to give good prompts to the user

grossPay = calcPay(payRate, hours); // Call to calcPay Method

 // Fill in the code to call calcNet and assign the value to netPay

 // Fill in the code to print both the grosspay and netpay in formatted

 // output with 2 decimal places.
 }

 public static void description()

 {

 System.out.println ("***");

 System.out.print ("This program takes two numbers ");

 System.out.println ("(pay rate and hours)");

 System.out.println ("and multiplies them to get grosspay ");

 System.out.println ("It then calculates net pay by subtracting 15%");

 System.out.println ("***");

 }

 public static double calcPay(double rate, double time)

 // This method takes rate and time and multiplies them to

 // get gross pay which is returned

 {

 // Fill in the code to find gross pay
 }

 public static double calcNet(double grossPay)

 {

 // This method takes gross pay and subtracts 15% This value is returned

 // Fill in the code that will take 15% off grossPay and return this

 // value back to the calling method

 }

}

Exercise 1:
Fill in the code (places in bold) Both gross and net are the return values of the two methods calcPay and calcNet.

Exercise 2:
Compile and run your program and make sure you get the output shown.

Please input the hours worked 25.2

Please input the pay per hour 9.45
Welcome to the Pay Roll Program

This program takes two numbers (pay rate and hours)

and multiplies them to get grosspay

It then calculates net pay by subtracting 15%

The gross pay is $238.14

The net pay is $202.42

We hope you enjoyed this program

Lab 5.4
Student Generated Code
Option 1:
Write a class that will input from the user the number of miles traveled and the number of hours in took. The program will determine the miles per hour. The calculation must be done in a method other than main; however, main will pass miles and hours to this method. main will print the calculation.

Sample Input/Output

Please input the miles traveled 275
Please input the hours traveled 4.5
Your speed is 61.11 miles per hour
Option2:
Write a program that will input from the user the number of grades to be read in. The program will then read that many grades calculate the sum and then send the sum and number of grades to a method that will calculate and print the average in formatted output.

Sample Input/Output

Please input the number of grades to be read in 4

Please input a grade 78
Please input a grade 93
Please input a grade 81
Please input a grade 65
The sum of the grades is 317.00

The average grade is 79.25

Lab 6

Switch & Loop Statements
Purpose
1.
To work with switch statements

2.
To work with do while loops

3.
To work with for loops

Procedure
A.
Students should read Lessons 16 through 18 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 16 - 18
 10 min.

LESSON 6A

 Lab 6.1

Working with the switch statement
Basic understanding of the switch statement
 20 min.

 Lab 6.2

Working with the do - while loop
Understanding of do while loops
 30 min.

LESSON 6B
 Lab 6.3

Nested for loops
Understanding of nested for loops
 20 min.

 Lab 6.4

Student Generated Code
Finished labs 6.1 through 6.3
 30 min.

Pre-Lab 6 Writing Assignment
Fill in the Blank questions
1.
 A block of code that repeats forever is called _________________________ .

2.
 To keep track of the number of times a particular loop is repeated, one can use a

___________________________________ .

3.
An event controlled loop that is always executed at least once is the ___________________________________ .

4.
An event controlled loop that is not guaranteed to execute at least once is the

___________________________________ .

5.
In a switch statement the ______________ branch is followed if none of the case expressions match the given switch expression.

6.
 The if and switch statements are examples of _______________ statements.

7.
A loop within a loop is called a ___________________________________ .

8.
To write out the first 12 positive integers and their cubes, one should use a ________________________________.

9.
The switch statement uses the value of an exact ___________ or ______________

values to determine which group of statements to branch through.

10.
In a nested loop the ____________ loop goes through all of its iterations for each iteration of the __________________ loop. (Choose inner or outer for each blank.)
Lab 6A
Lab 6.1
Working with the switch statement
Bring in the class GradeSwitch from folder Lab6. The code is as follows:

 /* This program will get a grade from the user

 * and then have an appropriate message printed.

 *

 * Programmer: Your Name

 * Lab 6.1

 * Date: The Date

 */

import java.util.Scanner;

public class GradeSwitch

{

 public static void main (String[] args)

{

 Scanner kbd= new Scanner(System.in);

 int letterGrade;

 System.out.println("Please input a grade");

 System.out.println("Input a 4 for an A");

 System.out.println("Input a 3 for a B");

 System.out.println("Input a 2 for a C");

 System.out.println("Input a 1 for a D");

 System.out.println("Input a 0 for an F");

 letterGrade = kbd.nextInt();

 printMessage(letterGrade);

}

public static void printMessage(int grade)

{

// Fill in the code to print a message of an A--- Excellent work if grade is 4

// "B--good job if grade is a 3 C--satisfactory if grade is a 2

 // D--there is a problem if grade is 1 F-failed if grade is 0

// You did not enter a legal grade if it is anything else

}

}
Exercise 1:
Rewrite the program using if and else if statements rather than a switch statement. Did you use a trailing else in the new version? If so, what did it correspond to in the original program with the switch statement?

Exercise 2: Type in the following code and run it. This program takes a character from the keyboard and uses char data as the case in the Switch statement. After running it, altar the program using a loop so that the user can enter more than one grade. The program will stop when the user enters either a q or Q.

import java.util.Scanner;

public class GradeMessage

{

 public static void main(String[] args){

 Scanner kbd=new Scanner(System.in);

 char letter;

 String grade;

 System.out.println("What grade did you earn in Programming I: Input a single character A,B,C,D, or F ?");

 grade=kbd.next();

 letter = grade.charAt(0);

 switch(letter) // This is where the switch statement begins

 {

 case 'A':

 case 'a': System.out.println("An A - excellent work !");

 break;

 case 'B':

 case 'b': System.out.println("You got a B - good job");

 break;

 case 'C':

 case 'c': System.out.println("Warning a C is satisfactory");

 break;

 case 'D':

 case 'd': System.out.println("While D is passing, there is a problem");

 break;

 case 'F':

 case 'f': System.out.println("You failed - better luck next time");

 break;

 default: System.out.println("You did not enter an A, B, C, D,or F");

 }

 }

}
Lab 6.2
Working with the do-while loop
Bring in the program Beverage.java from the Lab6 folder. The code is shown below:

/* This program displays a hot beverage menu and prompts the user to

 * make a selection. A switch statement determines which item the user

 * has chosen. A do-while loop repeats until the user selects the exit

 * option from the menu.

 *

 * Programmer: Your Name

 * Lab 6.2

 * Date: The Date

 */

import java.util.Scanner;

public class Beverage

{

 // Constants

// Fill in four constants as follows:

// COSTOFCOFFEE = 1.00

 // COSTOFTEA = .75

 // COSTOFCHOCOLATE = 1.25

 // COSTOFCAPPUCCINO = 2.25

 public static void main(String[] args)

 // This method determines the type & amount of beverages desired

 {

 Scanner keyboard=new Scanner(System.in);

 double cost = 0; // cost of the beverages

 int numberOfCups = 0; // number of cups desired

 int bevType; // type of beverage selected

 do

 {

 System.out.println("Hot Beverage Menu");

 System.out.println("Please select a choice from the following");

 System.out.println("1: Coffee");

 System.out.println("2: Tea");

 System.out.println("3: Hot Chocolate");

 System.out.println("4: Cappuccino");

 System.out.println("5: EXIT ");

 bevType = keyboard.nextInt();

 if (bevType < 5 && bevType > 0)

 {

 System.out.println("How many cups would you like?");

 numberOfCups = keyboard.nextInt();

 }

 // Fill in code to develop a switch statement that is controlled by bevType
 {

 case 1 : cost = numberOfCups * COSTOFCOFFEE;

 break;

 // Fill in code for cases 2 through 4

 case 5 : System.out.println("Thanks for your order");

 break;

 // Fill in default case for invalid input which prints an invalid statement
 } // end of switch

 if (bevType == 1 || bevType == 2 || bevType == 3 || bevType == 4)

 System.out.printf("The total cost is $%.2f \n" , cost);

 } //Fill in the while of the do while (ends with bevType !=5)

 }

}

Exercise1:
Complete the program by filling in the statement in bold so that it performs the indicted task.

Exercsie2:
Test your program with different input. Try all the possible relevant cases and record your result. What happens if you do not enter 1,2,3,4,or 5?

Sample Run

Hot Beverage Menu

Please select a choice from the following

1: Coffee

2: Tea

3: Hot Chocolate

4: Cappuccino

5: EXIT

3
How many cups would you like?

2
The total cost is $2.50

Hot Beverage Menu

Please select a choice from the following

1: Coffee

2: Tea

3: Hot Chocolate

4: Cappuccino

5: EXIT

8
Invalid selection try again

Hot Beverage Menu

Please select a choice from the following

1: Coffee

2: Tea

3: Hot Chocolate

4: Cappuccino

5: EXIT

1
How many cups would you like?

4
The total cost is $4.00

Hot Beverage Menu

Please select a choice from the following

1: Coffee

2: Tea

3: Hot Chocolate

4: Cappuccino

5: EXIT

5
Thanks for your order
Lab 6B

Lab 6.3
Nested for loops

Bring in program ProgramTime.java from the Lab6 folder.

/* This program finds the average time spent programming by each student

 * over a three day period.

 * Programmer: Your Name

 * Lab 6.2

 * Date: The Date

 */

import java.util.Scanner;

public class ProgramTime

{

 final static int DAYS=3;

 public static void main(String[] args)

 {

 Scanner kbd=new Scanner(System.in);

 int numStudents;

// number of students

 double numHours;

// number of hours on one day by a student

 int countStudent; // counter for the outer loop

 int countDays; // counter for inner loop

 double averageHours; // average hours student spent programming over the days

 double totalHours; // total hours spent programming over the days

 System.out.println("How many students are there");

 numStudents = kbd.nextInt();

 for (countStudent = 1; countStudent <= numStudents; countStudent++)

 {

 totalHours=0;

 // fill in the inner for loop that will determine the number of hours a student spent // programming in this period

 {

 System.out.print("Please enter the number of hours worked by ");

 System.out.print("student " + countStudent);

 System.out.println(" on day " + countDays + ".");

 numHours = kbd.nextDouble();

 totalHours=totalHours + numHours;

 } // end of inner (days loop)

 // fill in the call to the function that will determine the average hours spent
 printResults(averageHours);

 } // end of outer (student list)

 } // end of main

 public static double determineAverage(double hours)

 // fill in the rest of this function that will return the average number of hours the student spent in

 // programming

 public static void printResults(double avgHours)

 {

 System.out.print("The average number of hours per day spent programming ");

 System.out.printf("by this students is %.2f\n" , avgHours);

 }

} // end of class

Exercise 1:
Complete this program by filling in the code indicated by the bold comments.

Exercise 2:
Note that the inner loop of this program is always executed exactly three times, since that is the value of the constant DAYS. Modify the code so that the inner loop iterates n times, where n is a positive integer input by the user NOTE: This is a little more involved than it may seem at first. Run the program .

Lab 6.4
Student Generated Code
Option 1:
Suppose Dave drops a watermelon off a high bridge and lets it fall until it hits the water. If we neglect air resistance, then the distance d in meters fallen by the watermelon after t seconds is d = 0.5*g*t^2, where the acceleration of gravity g = 9.8 meters/second ^2. Write a program that asks the user to input the number of seconds that the watermelon falls and the height h of the bridge above the water. The program should then calculate the distance fallen for each second from t = 0 until the value of t input by the user . If the total distance fallen is greater than the height of the bridge, then the program should tell the user that the distance fallen is not valid.
Sample run 1:

Please input the time of fall in seconds:
2

Please input the height of the bridge in meters:
100

Time Falling (seconds)
Distance Fallen (meters)

0

0

1

4.9

2

19.6

Sample run 2:

Please input the time of fall in seconds:
4

Please input the height of the bridge in meters:
50

Time Falling (seconds)
Distance Fallen (meters)

0

0

1

4.9

2

19.6
3
44.1

4
78.4
Warning-Bad Data: The distance fallen exceeds the height of the bridge

Option 2:
Write a program that prompts the user for the number of tellers at Nation’s Bank in Hyatesville that worked each of the last three years. For each worker the program should ask for the number of days out sick for each of the last three years. The output should provide the number of tellers and the total number of days missed by all the tellers over the last three years.

See the sample output below.

Sample run:

How many tellers worked at Nation’s Bank during each of the last three years ?
2

How many days was teller 1 out sick during year 1 ?

5

How many days was teller 1 out sick during year 2 ?

8

How many days was teller 1 out sick during year 3 ?

2

How many days was teller 2 out sick during year 1 ?

1

How many days was teller 2 out sick during year 2 ?

0

How many days was teller 2 out sick during year 3 ?

3

The 2 tellers were out sick for a total of 19 days during the last three years.

Lab 7

Working with Classes
Purpose
1.
Create classes
2.
Declaring objects and access class methods

3.
Work with constructors

Procedure
A.
Students should read Lessons 16 through 18 before coming to lab
B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 19 - 21
 10 min.

LESSON 7A

 Lab 7.1

Accessing class methods
Understanding of class methods and how they are accessed
 15 min.

 Lab 7.2

Working with classes: Money Exchange program with classes
Understanding of classes

and their components
 30 min.

LESSON 7B
 Lab 7.3

Developing Classes
Understanding of classes
 20 min.

 Lab 7.4

Student Generated Code:
Finished labs 7.1 through 7.3
 30 min.

Pre-Lab 7 Writing Assignment
Fill in the blank questions
1.
A class header consists of the word class, the name of the class and an optional _______________ modifier.

2.
The most common access modifier of instance variables is _________________.

3.
Allocation of memory space for an object is done by the ___________operator.

4.
Complete the following object instantiation: (You may assume that Circle is a class)

Circle sphere = ______________________

5.
A constructor must have the same name as its _______________.

6.
A constructor does not contain a _________ __________ unlike every other method.

7.
The default constructor sets all numeric data fields to ___________.

8.
The default constructor sets boolean data fields to _____________.

9.
A constructor is a method that is ___________ invoked when an object is instantiated.

10.
Class methods are accessed by giving the object and the method name separated by a(n) ____________.

Lesson 7A
Lab 7.1
Accessing class methods
Bring in the class Student.java from Folder Lab7. This is the class from Lesson 20

The code of Student.java is as follows:

/* This program has a Student class with methods that will allow the main program

 * to set and get values to/from its properties.

 * Programmer: YOUR NAME

 * Lab 7.1

 * Date: The date

 */

public class Student // Class header

{

 private long idNumber; // Instance Variable idNumber

 private String lastName;
// Instance Variable lastName

 private String firstName;
// Instance Variable firstName

 private char grade;

// Instance Variable grade

 public long getIdNumber()
 // Instance Method of type long

 {

 // This method returns the value of the

 return idNumber; // private instance variable idNumber

 }

 public String getLastName()
// Instance Method of type string

 {

// This method returns the value of the

return lastName;

// private instance variable lastName;

 }

 public String getFirstName()
// Instance Method of type string

 {

// This method returns the value of the

 return firstName;
 // private instance variable firstName

 }

 public char getGrade()

// Instance Method of type char

 {

// This method returns the value of the

 return grade;
// private instance variable grade

 }

 public void setIdNumber(long id) // Instance method of type void

 {

// This method receives the value of an

 // id number through its formal parameter

idNumber = id;

 // id and sets that value to the private

 // instance variable idNumber

 }

 public void setFirstName(String first) // Instance method of type void

 {

 // This method receives the value

 firstName = first;

 // of first through its formal

 }

 // parameter and sets that value

 // to the data field firstName

 public void setLastName(String last) // Instance method of type void

 {

 // This method receives the value

 lastName = last;

 // of last through its formal

 }

 // parameter and sets that value

 // to the data field lastName

 public void setGrade(char letter) // Instance method of type void

 {

 // This method receives the value

 grade = letter;

 // of letter through its formal

 }

 // parameter and sets that value

 // to the data field grade

 public static void main(String[] args)

 {

 Student aStudent = new Student(); // This instantiates an object

 long number;

 aStudent.setIdNumber(345); // call to a class method

 //object.method actual parameter

 System.out.print("The Student Id number is ");

 System.out.println(aStudent.getIdNumber()); // call of a value returning

 // class method

 }

}

Exercise 1:
 Using the call to setIdNumber and getIdNumber in main as an example write code that will put the following information into the data fields of object aStudent and print the values to the screen.

lastName Filmore

firstName Millard

grade B

Exercise 2:
Keep the code you created in exercise 1 but now add a Constructor that initializes aStudent to the following and print those values out before the code that sets the data fields of aStudent to those made in exercise 1.

id 789

lastName DeFino

firstName Dean

grade A

The following should be the output:

The Student Id number is 789

The first name is Dean

The last name is DeFino

The grade is A

The Student Id number is 345
The first name is Millard

The last name is Filmore

The grade is B

Lab 7.2Working with classes
Retrieve class MoneyChange.java from Folder Lab7. The code is as follows:

/* This program will take the the number of dollars and cents from the keyboard

 * and determine both the Euro and peso equivalent If cents is 100 or more
 * it will convert it to dollars and cents.
 *
 * Programmer: Your name
 * Lab 7.2
 * Date: The Date
 */
import java.util.Scanner;

public class MoneyChange

{

// Constants

static final double DOLLAR_EURO =.7;

static final double DOLLAR_PESOS = 9.815;

private long dollars;

private long cents;

// methods

public void setMoney(long dolamt, long centamt)

{

// This method normalizes money

// Example It takes 2 dollars and 130 cents

// and makes it 3 dollars and 30 cents

dollars = dolamt + centamt / 100 ;

cents = centamt % 100;

}

public double euro()

{

// Fill in the code that will return the euro value of dollar and cents of the object that calls it
 }

public double pesos()

{

// Fill in the code that will return the euro value of dollar and cents

// of the object that calls it

}

public long getDollar() // This method returns

{
 // dollar amount

 return dollars;

}

public long getCents() // This method returns

{ // cents amount

 return cents;

}

public static void main(String[] args)

{

 // Fill in the code that will allow data to be read from the keyboard

 // Fill in the code to instantiate an object called money1 of type MoneyChange class

 // fill in the code that will declare both dollars and cents as long data types

 // Fill in the code to read dollars from the keyboard

 // Fill in the code to read cents from the keyboard

System.out.printf("The value of %d dollars and %d cents in euro is %.2f \n",

money1.getDollar(), money1.getCents(), money1.euro());

 // Study the formatted output statement above and create a formatted output for pesos

// using the same format. NOTE: %d is the format for integers.

}

}

Exercise 1:
Fill in the code requested in bold so that the following output is obtained.

Please input the amount of dollars 10
Please input the amount of cents 259
The value of 12 dollars and 59 cents in euro is 8.81

The value of 12 dollars and 59 cents in pesos is 123.57
Lesson 7B
Lab 7.3
Developing Classes

Retrieve class Square.java from the Folder Lab7. The code is as follows:

/* This program defines Square as a class and uses class methods

 * to find the perimeter and area of the square

 *

 * Programmer: YOUR NAME

 * Lab 7.3

 * Date: The date

 */

import java.util.Scanner;

public class Square

{

 // Fill in the code to define the class called Square.

 // It has one data field called side which contains the

 // length of the side of the square. It has the following methods:

 // setSide(double length) A void method that receives the

 // length as a perimeter and sets this value to side.

 // areaOf() A double method that returns the area of the square.

 // NOTE: It needs no parameters, for it uses the value of the data of side

 // perimeter() A double method that returns the perimeter of the

 // square. See NOTE above.

 public static void main(String[] args)

 {

 double size;

 Scanner kbd=new Scanner(System.in):

 System.println(“Please input the side length of the square”);

 size =kbd.nextDouble();

 Square box = new Square(); // instantiation of box as an object

 // of Square

 box.setSide(size); // call to method that sets the data filed side to the value contained in size

 System.out.println("The area of the box is " + box.areaOf());

 System.out.println("The perimeter of the box is " + box.perimeter());

 }

}

Exercise 1:
You are asked to fill in the class definition. Fill in the code so that if the user inputs 8.2 the following output is generated:

The area of the square is 67.24

The perimeter of the square is 32.8

Lab 7.4
Student generated code
 Give a Java class declaration called Savings for the following information:

Data Fields (Instance Variables)

1.
dollars

2.
cents

Methods

1.
openAccount. This method is called to put initial values in dollars and cents.

2.
deposit. A method that will add value to dollars and cents

3.
withdrawal. A method that will subtract values from dollars and cents

4.
showBalance. A method that will print dollars and cents.

Give the implementation code for all the member functions.

NOTE: You must perform normalization on cents. This means that if cents is 100 or more, it must increment dollars by the appropriate amount. Example: if cents is 234 then dollars must be increased by 2 and cents reduced to 34. Study the moneyexchange program in Lab 5.2.

Create a separate class called SavingsAccount that will create an object called bank1. The code will allow the user to input the initial value of the account dollars and cents, and then give a deposit amount in dollars and cents and then give a withdrawal in dolloars and cents.

Sample I/O

Please input the amount of intial dollars 200
Please input the amount of intial cents 50
Please input the amount of dollar deposit 40
Please input the amount of cent deposit 50
Please input the amount of dollar withdrawal 100
Please input the amount of cent withdrawal 98
Dollars = 140 cents = 2
Note: The two classes must be in the same project in Eclipse. If they are then there is no need to import the class Savings for the SavingsAccount program.

Lab 8

Interactive Input
Purpose
1.
Use interactive input

2.
Discuss streams and buffers

3.
Work with InputStreamReader

4.
Understanding of Throwing exception

5.
Work with Keyboard class

Procedure
A.
Students should read Lessons 19 through 21 before coming to lab
B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 22 - 24
 10 min.

LESSON 8A

 Lab 8.1

User Interactive Input
Understanding of System.in, BufferedReader, parse methods readLine() method
 30 min.

 Lab 8.2

Working with the Keyboard class
Understanding of Keyboard class in import statements
 30 min.

LESSON 8B
 Lab 8.3

Try and catch exception handling
Understanding interactive input & exception handling
 30 min.

 Lab 8.4

Student Generated Code
Finished labs 8.1 through 8.3
 30 min.

Pre-Lab Writing Assignment
Fill in the blank questions
1.
Data flowing in and out of a computer is called a(n) ______________________.

2.
A group of related classes is called a(n)__________ _________________.

3.
To prepare for exception handling the words _____________________ ______________ is appended to the main method header.

4.
BufferedReader dataIn =

 new BufferedReader(new InputStreamReader(______________);

Fill in the blank.
5.
A ___________method is used to convert string input to numeric format.

6.
A try block must also have a ________________ block.

7.
An ______________ is an event that starts a new object resulting from an erroneous or unusual situation.

8.
When an exception occurs the Java run-time environment throws the object exception to the processor who looks for a __________..

9.
_______________ is a method in the Keyboard class used to read a double data value from the keyboard.

10.
Keyboard.readString(); Explain what this statement of the Keyboard class does.

Lab 8A
Lab 8.1
User Interactive Input

Bring in the class PayInput from Lab 8 folder. The code is as follows:

/**

 * This class takes input from the keyboard.

 * It accepts hours worked and payrate as

 * integer values and determines gross pay.

 * These values are then printed to the screen.

 * Programmer: Your Name

 * Lab 8.1

 * Date: The date

 */

import // Fill in the proper code to import java io classes

public class PayInput

{

public static void main (String[] args)throws IOException

{

BufferedReader dataIn =

 // Fill in the code to finish this instruction

String strHours; // String variable for hours input

String strPayRate; // String variable for pay rate input

String wait; // This waits for input to terminate

 // program

int hours;

int payRate;

int grossPay;

System.out.println("Please input hours worked: ");

// Fill in code to input value into strHours

// Fill in code to convert strHours to integer

// and place that in hours

System.out.println("Please input the hourly pay rate");

// Fill in code to input value into strPayRate

// Fill in code to convert strPayRate to integer

// and place that in payRate

// Fill in code to determine grossPay

System.out.println("Hours worked is " + hours);

System.out.println("Hourly wage is " + payRate);

System.out.println("The Gross Pay is " + grossPay);

System.out.println("Hit return key to exit");

wait = dataIn.readLine();

}

}

Exercise 1: Fill in the code (parts in bold) to complete the program. NOTICE: you do not use the keyboard class for this exercise.

Exercise 2: Run the program with the following input:

Please input hours worked:
40

Please input the hourly pay rate
24

Hours worked is 40

Hourly wage is 24

The Gross Pay is 960

Hit return key to exit
Exercise 3: Run the program with other data and record your output
Exercise 4: Using PayInput as a guide, develop a program that will input the length and width as integers (from the keyboard) of a rectangle. It will output the length, width, perimeter and area. All these are integer data types.

Run the program with the following:

Please input length:
92

Please input the width
43

Length of rectangle is 92

Width of rectangle is 43

The perimeter is 270

The area is 3956

Hit return key to exit
Exercise 5: Run the program with other data and record you output.
Lab 8.2
Working with the Keyboard class
Before you do this lab, a class called Keyboard must be included in the same project as the following Wages program.

To include the Keyboard class in the project do the following: Open the Keyboard.java from the K drive in Notepad++. The Wages program will be created in the same project of Eclipse where Keyboard is located. This is critical for the following program to run correctly.

Bring in the Wages class from folder 8. The code is as follows:

/**

 * This class takes input from the keyboard.

 * It accepts hours worked and payrate and fed tax

 * and state tax and then determines determines gross pay.

 * it also determines net pay by subtracting the fed and

 * state tax from gross pay

 * These values are then printed to the screen.

 * Programmer: Your Name

 * Lab 8.2

 * Date: The date

 */

import java.io.*;

public class Wages

{

public static void main (String[] args)// Finish the code

{

String wait; // This waits for input to terminate program

int hours;

double payRate;

double grossPay;

double netPay;

double fedTax;

double stateTax;

System.out.println("Please input hours worked: ");

// Fill in the code to read in hours using Keyboard class

System.out.println("Please input the hourly pay rate");

// Fill in the code to read in the hourly pay rate using Keyboard class

System.out.println("Please input the Fed tax as a decimal:");

System.out.println(" Example 20% will be input as .20");

// Fill in the code to read in fed tax using Keyboard class

System.out.println("Please input the State tax as a decimal:");

// Fill in the code to read in state tax using Keyboard class

// Fill in the code to calculate gross pay

// Fill in the code to calculate net pay

System.out.println("The hours worked is " + hours);

System.out.printf("The pay per hour is $%.2f\r" , payRate);

System.out.printf("The gross pay is $%.2f\r" , grossPay);

System.out.printf("The net pay is $%.2f\r" , netPay);

Keyboard.readString("Hit return to exit");

}

}

Exercise 1: Fill in the code in bold to complete the class and then compile and run the program as follows:

Please input hours worked:

40
Please input the hourly pay rate

9.67
Please input the Fed tax as a decimal:

 Example 20% will be input as .20

.15
Please input the State tax as a decimal:

.3
The hours worked is 40

The pay per hour is $9.67

The gross pay is $386.80

The net pay is $212.74

Hit return to exit

REMEMBER: The keyboard class must be in the same folder as the Wages class.

Exercise 2: Using the Wage class as an example, write a program that will input the radius of a circle (use a double data type) from the keyboard and will calculate and print the circumference and area of the circle. Let PI be a constant of 3.14. Recall from Lab 3 how to make constants in Java.

A sample run of the program may look like the following:

Please input radius of the circle

3.5
The radius of the circle is 3.5

The circumference of the circle is 21.98

The area of the circle is 38.465

Hit return to exit
Lab 8B
Lab 8.3
Try and catch exception handling
(Not using Keyboard class)

Retrieve BattingAverage class from folder 8. The code is as follows:

/**

 * This class receives the number of times

 * at bat and the number of hits a baseball

 * player has. It determines his/her batting

 * average and prints all inforamtion to the screen

 */

// Fill in the import statement needed
public class BattingAverage

{

public static void main (String[] args)// Finish this code

{

BufferedReader dataIn =

 new BufferedReader(new InputStreamReader(System.in));

String strAtBat; // Number of times at bat as a string

String strHits; // Number of hits as a string

String wait; // Holds value for terminating the program

int atBat;

int hits;

 double batAverage;

boolean getData = false; // determines if input needs

 // to be re-submitted

do

{

 try

 {

 // Fill in the code to prompt input for number of times at bat

 // Fill in the code to read from keyboard atBat

 // Fill in the code to convert strAtBat to integer and

 // store in atBat

 // Fill in the code to prompt input for number of hits

 // Fill in the code to read from keyboard hits

 // Fill in the code to convert strHits to integer and

 // store in hits

 // Fill in the code to determine batAverage

 // Fill in code to print out all information

 System.out.println("Hit return key to exit");

 wait = dataIn.readLine();

 getData = false;

 }

 // If an exception occurs in this try block(user inputs char

 // instead of data) the program will not terminate but rather

 // go to the catch block

 catch (NumberFormatException e) // The catch block

 {

 System.out.println("Your entered incorrect data");

 System.out.println ("Please enter an integer ");

 getData = true;

 }

 }

 while (getData);

}

}

Exercise 1: Study the code very carefully. Notice the do while loop. This is a loop that will keep repeating the try block as long as the user does not input two integer values (one each for atBat and hits). You do Not use the Keyboard class for this exercise.

If the user inputs a letter, for example, instead of an integer the program will force the user to re-submit all the input data over again. Finish the program by completing the code in bold. Try the following sample runs.

Run 1:

Please input number of times at bat

100
Please input number of hits

29
The batting average for 100 at bats with 20 hits is 0.29

Hit return key to exit

Run 2:

Please input number of times at bat

200
Please input number of hits

B
You entered incorrect data

Please enter an integer

Please input number of times at bat

200
Please input number of hits

61
The batting average for 200 at bats with 61 hits is 0.305

Hit return key to exit

Exercise 2: What would happen if you entered floating point values? Would that be thrown to the catch block? Try it and see.

Describe what happened?

Lab 8.4 Student Generated Code
You will alter the program in Lab 8.4 using input from the keyboard. You may use the Keyboard class for this exercise.

 Give a Java class declaration called BankBook for the following information:

Data Fields (Instance Variables)

1.
dollars

Methods

1.
openAccount This method is called to put initial value in dollars..

2.
deposit. A method that will add value to dollars.

3.
withdrawal. A method that will subtract values from dollars.

4.
showBalance. A method that will print dollars.

Give the implementation code for all the member functions.

NOTE: This class does not have to perform normalization since dollars is treated as a floating point value.

Write a separate class that will create an object called bank1. The code will then input a beginning balance, and one deposit and one withdrawal. It will calculate the final value of dollars and cents and print this to the screen.

A sample run is as follows:

Please input a beginning balance

456.56
Please input a deposit

100.50
Please input a withdrawal

49.56
The current balance is $507.50
Lab 9

Introduction to Arrays
Purpose
1.
To work with one, two and multi-dimensional arrays

2.
To use the Array Length

Procedure
A.
Students should read Lessons 25 through 27 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 25 - 27
 10 min.

LESSON 9A

 Lab 9.1

 One-dimensional array
Know the basics of array processing
 15 min.

 Lab 9.2

Two-dimensional array
Understanding of two-dimensional arrays
 35 min.

LESSON 9B
 Lab 9.3

Three-dimensional array
Understanding of multi-dimensional arrays
 15 min.

 Lab 9.4

Student Generated Code
Finished labs 9.1 through 9.3
 40 min.

Pre-lab 9 Writing Assignment
Fill in the blank questions

1.
The first subscript of every array in Java is _______ and the last is _______ less than the total number of locations in the array.

2.
The amount of memory allocated to an array is based on the _______ ______ and the ____________ of locations or size of the array.

3.
Numeric arrays have the default value of ______________________.

4.
Multi-dimensional arrays are usually processed within _____________ loops.

5.
Arrays used as arguments are always passed by ______________.

6.
The ________________ field contains the number of elements in the array.

7.
An n-dimensional array will be processed within ________ nested loops when accessing all elements of the array.

8.
To use a method that belongs to an object that is part of an array, you place the appropriate _________ after the array name and before the __________ that precedes the method name.

9.
In passing an array as an argument, the method header argument list for an arrays has the name of the data type followed by ______________ followed by a formal parameter name.

10.
In initializing a two-dimensional array during declaration and allocation of memory, all initial values of a row are enclosed in _____________ ________________.

Lesson 9A
Lab 9.1
One-dimensional array

Retrieve class GradeStat.java from the Lab 9 folder. The code is as follows:
/**

 * This program will read in a group of test scores (positive integers from 1 to 100)

 * from the keyboard. The program will calculatethe average of all the scores

 * as well as list the highest and lowest score.

 * The number of scores are undetermined but there will be no more than 50.

 * A negative value is used to end the loop

 * Thus the array size will be set at 50

 *

 * Programmer: Your Name

 * Lab 9.1

 * Date: The Date
 */

import java.util.Scanner;

public class GradeStat

{

 final static int MAXGRADES = 50; // maximum # of grades

 public static void main (String[] args)

 {

 int[] gradeArray = new int[MAXGRADES];

 int pos = 0; // Index to the array

 double avgOfGrades; // contains the average of grades

 int highestGrade; // contains the highest grade

 int lowestGrade; // contains the lowest grade

 int sizeOfArray; // the size of the used array

 // input grades

 Scanner scan = new Scanner (System.in);

 System.out.println("Please input a grade from 1 to 100 type a negative number to exit");

 gradeArray[pos] = scan.nextInt();

 while (gradeArray[pos] >=1)

 {

 pos++; // increment subscript

 System.out.println("Please input a grade from 1 to 100");

 gradeArray[pos] = scan.nextInt();

 }

 sizeOfArray = pos + 1; // The actual number of elements used in the array

 avgOfGrades = Average(gradeArray, sizeOfArray);

 System.out.println("The average of all the grades is "

+ avgOfGrades);

 highestGrade = Highest(gradeArray, sizeOfArray);

 System.out.println("The highest grade is " + highestGrade);

 lowestGrade = Lowest(gradeArray, sizeOfArray);

 System.out.println("The lowest grade is " + lowestGrade);

 }

public static double Average(int [] array, int size)

{

int pos = 0;

double sumOfGrades = 0;

double average;

while (pos < size)

{

sumOfGrades = sumOfGrades + array[pos];

pos = pos + 1;

}

average = sumOfGrades / size ;

return average;

}

public static int Highest (int [] array, int size)

{

// Fill in the code to determine highest grade

}

public static int Lowest (int [] array, int size)

{

// Fill in the code to determine lowest grade

}

}
Exercise 1:
Study the program very carefully. Notice that although our array size is 50, we don’t always use all 50 elements. The program keeps reading input until the user inputs a negative number. Notice the priming the read. After the while loop we assign sizeOfArray to pos. The variable pos will hold the amount of legitimate numbers in the array. (Legitimate means valid grades and not a negative sentinel data used to end the input). Notice how the array is passed as an argument and also notice that the size of the legitimate elements is also passed and used in the methods. Fill in comments that explain what is happening for each instruction and fill in the code described in bold. The only code that is missing is the Highest and Lowest method code. By studying the Average method you should be able to complete this program without too much difficultly.

Exercise 2:
After completing exercise 1, alter the program so that the user first inputs the number of legitimate elements to be input to the array. In this case we do not need sentinel data. You also do not need to prime the read. This can be done with a for loop.

Lab 9.2
Two-Dimensional Array

Look at the following table containing prices of certain items

12.78
 23.78
 45.67 12.67

 7.83 4.89 5.99 56.84

13.67 34.84 16.71 50.89

These numbers can be read into a two dimensional array.

Retrieve class price.java from the Lab 9 folder. The code is as follows:

/** This program will read in prices into a two dim array

 * It will print those prices in a table form

 * Programmer: Your Name

 * Lab 9.2

 * Date: The Date
*/

import java.io.*;

import Keyboard;

public class Price

{

 // The maximum size of the array is 10 x 10

 final static int MAXROWS = 10;

 final static int MAXCOLS = 10;

 private int rowsUsed; // number of rows used

 private int colsUsed; // number of cols used

 private double[][] priceTable = new double[MAXROWS][MAXCOLS];

 public Price()

 {

 rowsUsed = 0;

 colsUsed = 0;

}

 public void GetPrice()throws IOException

 {

 // This procedure asks the user to input the

 // number of rows and columns used. It will then

 // ask the user to input x number of prices (x = rows * columns)

 // The data is placed in the array

 System.out.println("Please input the number of rows from 1 to " + MAXROWS);

 rowsUsed = Keyboard.readInt();

 System.out.println("Please input the number of columns from 1 to " + MAXCOLS);

 colsUsed = Keyboard.readInt();

 for (int row = 0; row < rowsUsed; row++)

 for (int col = 0; col < colsUsed; col++)

 {

 // Fill in code to read and store the next value

 }

 }

 public void PrintPrice()

 {

 System.out.println("Here are the Prices");

 for (int row = 0; row < rowsUsed; row++)

 {

 for (int col = 0; col < colsUsed; col++)

 // Fill in code to print the table

 }

 }

 public static void main(String[] args)throws IOException

 {

 Price hardware = new Price();

 // Fill in code to call the appropriate methods so

 // that data is read in the array and printed

 Keyboard.readString("Hit enter to exit");

 }

}
Exercise 1:
Study the program very carefully. Make sure you understand all the code. Complete the program by coding the code requested in bold.

Exercise 2:
Run the program to get the following results.

Please input the number of rows from 1 to 10
2

Please input the number of columns from 1 to 10
3

Please input the price of an item with 2 decimal places
1.45

Please input the price of an item with 2 decimal places
2.56

Please input the price of an item with 2 decimal places
12.98

Please input the price of an item with 2 decimal places
37.86

Please input the price of an item with 2 decimal places
102.34

Please input the price of an item with 2 decimal places
67.89

Here are the Prices

 1.45 2.56 12.98

 37.86 102.34 67.89

Hit Enter to Exit
Lab 9B
Lab 9.3
Three-Dimensional Array

Retrieve class Schools.java from the Lab 9 folder. The code is as follows:

/** This program creates a class of School

 * rooms in different building. A 3 dimensional

 * array is used to represent 1) building integer number

 * 2) floor in building (integer) 3) room on floor (integer)

 * The array holds the number of students each class

 * can hold. Each class is represented by a building, floor,

 * and room number.

 * Programmer: Your Name

 * Lab 9.3

 * Date: The Date
 */

import Keyboard;

import java.io.*;

public class Schools

{

final static int BUILDINGNUMBER = 2;

final static int FLOORNUMBER = 3;

final static int ROOMNUMBER = 3;

private int[][][] roomCapacity =

new int[BUILDINGNUMBER][FLOORNUMBER][ROOMNUMBER];

public void getData() throws IOException

{

int site; // Building counter

int floor; // Floor counter

int room; // Room counter

// Fill in the code to develop 3 nested loops

{

 System.out.println("Please input the capacity of the room in Building "

 + (site + 1) + " floor " + (floor + 1)

 + " room number " + (room + 1));

 // Fill in the code to read a value into the array

}

}

public void printData()

{

int site; // Building counter

int floor; // Floor counter

int room; // Room counter

// Fill in code for outer loop

{

System.out.println("\n\nBuilding Number " + (site+1));

System.out.println("\n\n Room 1 Room 2 Room 3 ");

// Fill in code for middle loop

{

System.out.print("\nFloor " + (floor + 1) + " ");

// Fill in code for inner loop

 System.out.print(roomCapacity[site][floor][room] + " ");

 System.out.println("");

}

}

}

public static void main(String[] args)throws IOException

{

 // Fill in code to declare and instantiate a Schools class

 // called elementary

elementary.getData();

elementary.printData();

Keyboard.readString("Hit enter to exit");

}

}

Exercise 1:
Study the code very carefully. Fill in the code (in bold). Run the program.

Lab 9.4
Student Generated Code
Write a program that will input temperatures for consecutive days. The program will store these values into an array and call a function that will return the average of the temperatures. It will also call a function that will return the highest temperature and a function that will return the lowest temperature. The user will input the number of temperatures to be read. There will be no more than 50 temperatures. Average should be displayed to two decimal places.

Sample run:

Please input the number of temperatures to be read
5

Input temperature 1:
68

Input temperature 2:
75

Input temperature 3:
36

Input temperature 4:
91

Input temperature 5:
84

The average temperature is 70.80

The highest temperature is 91.00

The lowest temperature is 36.00
Lab 10

Strings
Purpose
1.
To work with the String class and its various methods

2.
To work with the StringBuffer class and its methods

Procedure
A.
Students should read Lessons 28 through 30 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 28 - 30
 10 min.

LESSON 10A

 Lab 10.1

 Converting strings to numbers
Understanding of User Input and String conversions
 15 min.

 Lab 10.2

Working with StringBuffer class
Understanding of StringBuffer class
 20 min.

 Lab 10.3

Working with Case Conversion
Understanding of String class
 15 min.

LESSON 10B
 Lab 10.4

Student Generated Code
Finished labs 10.1 through 10.3
 50 min.

Pre-lab 10 Writing Assignment
Fill in the blank questions

1.
String class objects are said to be ______________ because they cannot change.

2.
The ___________ method is used to determine case sensitive equality of String objects.

3.
The ___________ method compares two strings and will produce a negative, positive or 0 value depending on that comparison.

4.
The__________________method converts all characters to upper case.

5.
The _________________ method determines if a specific character occurs within a String

6.
The _________________ method allows one to replace all occurrences of some character within a string.

7.
The _________________ method converts any primitive type to a String.

8.
The ________________method converts a string to an integer.

9.
The ______________function returns one character from a String variable. The character is located at the position given by n.

10.
The _____________method attaches characters at the end of a StringBuffer object.

Lab 10A
Lab 10.1
Converting Strings to numbers

Bring in StringConver.java from Lab 10. The code is as follows:

/*

 * This class takes input from the keyboard.

 * It accepts hours worked and pay rate as

 * double values and determines gross pay.

 * These values are printed to the screen.

 * The input is presented as Strings that need

 * numeric conversion.

 * Programmer: Your Name

 * Lab 10.1

 * Date: The Date

*/

import java.io.*;

public class StringConver

{

 private double hours;

 private double payRate;

 private double grossPay;

 public StringConver()

 {

 // Fill in code to set all private data elements

 // equal to 0

 }

 public void getData()throws IOException

 {

 BufferedReader dataIn = new

BufferedReader(new InputStreamReader(System.in));

 String strHours;

 String strPayRate;

 System.out.println("Please input hours worked");

 strHours = dataIn.readLine();

 hours = // Fill in code

 System.out.println("Please input pay rate");

 // Fill in code to input pay rate and have it

 // converted to double.

 }

 public void findGrossPay()

 {

 grossPay = hours * payRate;

 }

 public void printPay()

 {

 System.out.printf("Hours worked = %.2f\r" , hours);

 System.out.printf("Pay rate = %.2f\r" , payRate);

 System.out.printf("Gross pay = $%.2f\r" , grossPay);

 }

 public static void main(String[] args) throws IOException

 {

 StringConver employee = new StringConver();

 // Fill in the code to call all methods

 // for employee so that data is read, grosspay

 // calculated and data is printed

 }

}

Exercise 1:
Fill in the code in bold so that the program runs.

Sample run:

Please input hours worked
40.5

Please input pay rate
16.85

Hours worked = 40.50

Pay rate = 16.85

Gross pay = $ 682.43
Lab 10.2
Working with StringBuffer class
Bring in MessageSign from folder Lab10. The code is as follows:

/** This program will ask for a candidate selection

 * It will then print out the selection

 * Programmer: Your Name

 * Lab 10.2

 * Date: The Date

 *

 */

import java.io.*;

class MessageSign

{

 private StringBuffer ad = new StringBuffer();

 private String sponsor = new String();

 public void getAd()throws IOException

 {

BufferedReader dataIn = new BufferedReader(new InputStreamReader(System.in));

String strChoice;

int choice;

System.out.println("Please input your candiate's name");

System.out.println("Select 1 for DeFino and 2 for Smith");

strChoice = dataIn.readLine();

choice = Integer.parseInt(strChoice);

if (choice == 1)

sponsor = "DeFino";

else if (choice == 2)

sponsor = "Smith";

// Fill in the code that will insert at

// the beginning of ad (which is currently blank)

// the words "I'm voting for "

// Fill in the code that will append to ad the

// value of sponsor

// Fill in the code that will append (on a

// different line) to ad the words "sponsored by

// committee to elect "

 // Fill in the code to append to ad the name of the sponsor
 }

 public void printAd()

 {

 System.out.println(ad);

 }

 public static void main(String[] args) throws IOException

 {

 // Fill in the code to create and instantiate a

 // MessageSign object called republican

 republican.getAd();

 // fill in the code to call the method that will print ad

 }

}

}

Exercise 1:
Fill in the code (in bold) so that the program will run. Study each statement very carefully

Sample run:

Please input your candidate’s name

Select 1 for DeFino and 2 for Smith
1

I’m voting for DeFino

sponsored by committee to elect DeFino

Lab 10.3Working with Case Conversion
Bring in class CaseConversion from folder Lab 10. The code is as follows:

/** This program works with String functions

 * It determines the average money spent

 * on food in a given month

 * Programmer: Your Name

 * Lab 10.3

 * Date: The Date

 */

import java.io.*;

public class CaseConversion

{

 private int week;

 private int total;

 private int dollars;

 private double average;

 private String choice;

 public void getBudget() throws IOException

 {

 BufferedReader inputData =

new BufferedReader(new InputStreamReader(System.in));

 String strDollars;

 do

 {

 total = 0;

 for (week = 1; week <= 4; week++)

 {

 System.out.println

 ("How much, to the nearest dollar, did you "

 + "spend on food during week " + week);

 strDollars = // Fill in the code to read the dollar amount

 dollars = Integer.parseInt(strDollars);

 total = total + dollars;

 }

 average = total / 4.0;

 // Fill in code to output (with label) the average

do

{

 System.out.println("Would you like to find another month’s average”);

 choice = inputData.readLine();

 } while (!(choice.equalsIgnoreCase("yes")) &&

 !(choice.equalsIgnoreCase("no")));

 }while (// Fill in code that will keep loop going if choice is yes

 // (not case sensitive)

 }

public static void main(String[] args) throws IOException

{

CaseConversion budget1 = new CaseConversion();

budget1.getBudget();

}

}

Exercise1:
Fill in the code in bold to complete the program

Sample Run:

How much, to the nearest dollar, did you spend on food during week 1
87

How much, to the nearest dollar, did you spend on food during week 2
68

How much, to the nearest dollar, did you spend on food during week 3
72

How much, to the nearest dollar, did you spend on food during week 4
95

Your weekly food bill for the month is $80.5

Would you like to find the average for another month
no

Exercise 2: Add a try and catch block that will check for proper integer data for the approximate weekly food bill.

Sample Run

How much, to the nearest dollar, did you spend on food during week 1

98.76
You entered incorrect data You must enter an integer

How much, to the nearest dollar, did you spend on food during week 1

99
How much, to the nearest dollar, did you spend on food during week 2

89
How much, to the nearest dollar, did you spend on food during week 3

94
How much, to the nearest dollar, did you spend on food during week 4

101
The average weekly food bill for the month is $95.75

Would you like to find another month's average

no

Lab 10B
Lab 10.4Student Generated Code
Write a program that inputs a full name (First Middle Initial with a dot and last name). The program will test to see if the name has a first name of Mary, whether or not the last name is Smith and whether the middle initial is C.

Sample Run:

Please input a Full name (First, Middle Initial with a dot, Last name)
Rudolph C. Smith

The first name is not Mary

The middle initial is C

The last name is Smith.
Lab 11

Introduction to Applets
Purpose
1.
Work with and create simple HTML documents

2.
Work with and create simple Applets

3.
Work with and create Button and TextField components

Procedure
A.
Students should read Lessons 31 through 33before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 31 - 33
 10 min.

LESSON 11A

 Lab 11.1

 Simple Applets
Know the simple Applet structure
 15 min.

 Lab 11.2

Creating a Web Page
Completion of ll.1
 25 min.

LESSON 11B
 Lab 11.3

Simple Components
Know how to create and use Button and TextField components
 20 min.

 Lab 11.4

Student Generated Code
Finished labs 11.1 through 11.3
 40 min.

Pre-Lab 11 Writing Assignment
Fill in the Blank questions
1.
The _______________________ graphic method will draw a solid rectangle at a certain location.

2.
The _______________________graphic method will draw a solid oval subscribed in a rectangle.

3.
The ______________________graphic method will draw a line from a starting point to an end point.

4.
A ______________is a Windows component in which a user types a single line of text data.

5.
The graphic method _____________ places a string of characters on a Web page at the x and y location which are two of the three arguments it contains.

6.
Graphic applets will usually have the ______________ method.

7.
The _________ method is used to change the label on the button in the same way as

______________is used on a TextField.

8.
The first method executed in an applet is the _________________ method.

9.
The _____________ method places the insertion point in a Text Field.

10.
The import ____________ is the import that is brought in if we extend a class with JApplet

Lab 11A

Lab 11.1

Get into Eclipse and create a workspace in your Lab 11 folder and write the following code as a class called BullsEye

/* This applet will produce a bull's eye in red and black

/* Programmer: Your Name
/* Lab

/* Date: Date

/*

*/

import javax.swing.JApplet; // Allows user to write an applet

import java.awt.*; // Allows user to use everything in the Color and Graphics class

// in the awt library

public class BullsEye extends JApplet

{

 public void paint(Graphics g)

 {

 super.paint(g);

// Here are the instructions that will draw my bull's eye

 g.setColor (Color.black);

 g.fillOval(60, 40, 220, 220);

 g.setColor (Color.red);

 g.fillOval(80, 60, 180, 180);

 }

}

Finish the code so it will generate a complete bull’s eye.
Run it to see that it works.

After it is complete Go to your Lab 11 folder and click on the project name and then click on the folder called bin. You will see the BullsEye.class file. Copy this to the folder called htdocs on your P drive. Java always makes a .class version of your java program. We haven’t had to keep track of it until now!!!!

Lab 11.2 Creating a Web Page
Applets are generally launched from a Web Page. It is not the purpose of this lesson to teach Web development but we will create Web Pages that will render our Applets.

We will use SU”s htdocs folder on your P: drive to store our web pages and the applets we create. This will give them access to the internet from which we can see our work. Before you begin you will want to find a picture either of yourself or a nice picture from the web or you can use the ferrari picture on the K drive Lab 11. Copy the picture into your htdocs folder on your P: drive.

Creating a web site called my_applets.

1. Get into Microsoft Share Point and create a page similar to this:

 Start–>All programs –>Microsoft office–> SharePoint.

It will have your name on one line,

COSC 117 Applet Webpage on another. Insert your picture on the next line.

Insert–>picture–>from file

then find the picture you want from your htdocs folder.

Then type the words Bull’s Eye Applet on a line below the picture.

Center everything on the page. Highlight everything and then click the center button at the top.

Highlight the words Bull’s Eye Applet and then right click the mouse and select the hyperlink properties and then type the following in the address box

http://students.salisbury.edu/~username/BullsEye.htm

Note: replace username with whatever your username is. The ~username will go to your htdocs folder on the P drive.

Save this file in your htdocs Folder giving it the name my_applets.htm

Go to Lab 11 folder (or wherever your Bulls Eye program was saved and click on the bin folder and move the BullsEye.class file to your htdocs folder. Same place you saved the my_applets web page.

Creating the Applet Web Page and Launch the Applet

Exercise 1: This section of the lab will create a web page called bullseye.htm that will launch your bullseye.java applet that you wrote previously in a lecture assignment.

Exercise 2: Open Share Point if it is not already open.

Exercise 3: Select File, New.

Exercise 4: This time select the code option at the bottom of the screen. This allows you to enter text in HTML format.

Exercise 5: Here you will need to input the following HTML code:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>Bull's Eye Applet</title>

</head>

<body>

<APPLET code = "BullsEye.class" codebase = "." WIDTH = 400 HEIGHT = 300></APPLET>

</body>

</html>

Exercise 6: In this example, the name of the java applet is BullsEye. Note that the code needs the .class version (the compiled version) of your java applet.

Exercise 7: Copy the .class version of your applet (in this case, BullsEye.class) into the htdocs folder of your P: drive. If you do not copy the file, the applet will not be found and will not start when this web page is opened. You should have done this step already, but make sure the BullsEye.class is in the htdocs folder.

Exercise 8: Save this web page and call it bullseye.htm (to match the name you used in the link on your web page called my_applets). Save this also in the htdocs folder in your P: drive. You may have already done this.

Quick Check of P:\htdocs Contents

Exercise 1: Open the My Computer icon on your desktop and go to the htdocs folder on your P: drive.

Exercise 2: Make sure you see the following files there:

my_applets.htm

bullseye.htm

BullsEye.class

Exercise 3: If the files are all there, test the web page on the Internet. Open Internet Explorer and type the address of your web page that has the links to your applets:

http://students.salisbury.edu/~username/my_applets.htm
Lab 11B
Lab 11.3 Simple Components
Bring in the class ButtonText from the Lab 11 folder. The code is as follows:

import java.awt.*;

import java.applet.*;

public class ButtonText extends Applet

{

Label nameInfo = new Label("Please enter your name");

Font bigFont = new Font("TimesRoman", Font.BOLD,20);

Button clickHere = new Button("Click Here");

TextField message = new TextField(12);

public void init()

{

nameInfo.setFont(bigFont);

// Fill in the code to add the components

// that will have the following lay out

// nameInfo Label message text field clickhere Button

// Fill in the code that puts the cursor in the Text Field

// box

}

}

Exercise 1:
Fill in the code asked for in bold.

Exercise 2:
Before running the program, write down (and draw) what you think will be the window

Exercise 3:
Write a simple HTML code to run this program. Recall from Problem one how to run it from your htdocs folder. Remember you need the .class file

Exercise 4:
Run the program and see if it matches what you wrote in Exercise 2.

Exercise 5:
Alter the program so that the following is added to the applet:

ageInfo Label that asks the users for their age

message2 TextField that has a size of 5 where the users will input their age

clickHere2 Button that says Click Here

 Fill in the code to add the components that will have the following layout

 ageInfo Label message2 Text Field clickHere 2 Button

Lab 11.4 Student Generated Code
Option 1:
Develop an applet and the HTML code to place the following components on a Web page:

LABEL that says

Button that says

Text Field 10 spaces

Hello How are you

Press Here

Option 2:
Develop an applet and the HTML code to place the following components on a Web page:

Label that says

Drama Workshop

Label that says

TextField (5) Button that says

Enter the number of People Attending (cursor initially here) Calculate

Homework Extra Problem
Using graph paper to draw an image of a house with windows and a door. Give it a background of some type (trees, sun etc.)

Exercise 1: Create a new applet that displays a colorful image of the house.

Exercise 2: Call this applet house.java and save it in the htdocs folder on your P: drive.

Exercise 3: Add a link to the web page (the my_applets.htm web page) that will bring up this applet.

1. Open Share Point and open the my_applets.htm page. Add text to launch this applet

2. Select the text, right click and select hyperlink properties.

 3. Type the address in the address box. http://students.salsibury.edu/~username/house.htm
 4. Save it again to the htdocs folder.

Exercise: 4: Create the house.htm web site with the correct HTML code and save house.htm to the htdocs folder.

Exercise: 5: Copy the house.class file (found in the bin folder) into the htdocs folder.

Email your instructor the URL of your my_applets.htm webpage.

Lab 12

Event Driven Programming
Purpose
1.
Work with and create event-driven Window applets

2.
Ability to add interfaces to the applets

3.
Work with and create interactive applets

Procedure
A.
Students should read Lessons 34 through 36 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 34 - 36
 10 min.

LESSON 12A

 Lab 12.1

 Simple Interaction
Basic understanding of interfaces and event-driven programming
 15 min.

 Lab 12.2

Interactive applets that calculate
Good understanding of event-driven programming
 35 min.

LESSON 12B
 Lab 12.3

Relocating a component
Understanding of setLocation()
 10 min.

 Lab 12.4

Student Generated Code
Finished labs 12.1 through 12.3
 40 min.

Pre-Lab 12 Writing Assignment
Fill in the Blank questions
1.
Interfaces are ___________________ and not extended or imported.

2.
If you want an object to be a listener for an event, you must _________ the object as a listener for the source.

3.
You prepare an applet to accept event messages by adding the words _________________

to the class header.

4.
You prepare an applet to accept event message also by import the package __________________________

5.
You tell your applet to expect events with methods such as __________________________.

6.
The component on which an event is generated is called the ________ of the event. An object that is interested in an event is called the ___________.
7.
The _________________method is written by the user to determine what action should be done upon the occurrence of an event.

8.
The ___________________method is used to either activate or deactivate a component based on whether the argument is true (enable) or false (disable).

9.
The __________________ method is invoked upon leaving the Web page.

10.
The _______________ method releases any resources the applet might have allocated

Lab 12A
Lab 12.1 Simple Interaction
Bring in the class Greet.java and Greet.htm from folder Lab10. The code is as follows:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class Greet extends Applet implements ActionListener

 // prepare Applet to accept event

{

Label greeting = new Label("Hello. Who are you?");

Font bigFont = new Font("TimesRoman", Font.ITALIC,24);

Button pressHere = new Button("Press Here");

TextField message = new TextField(10);

public void init()

{

greeting.setFont(bigFont);

add(greeting);

add(message);

add(pressHere);

pressHere.addActionListener(this);

 // tells applet to expect events to happen

message.addActionListener(this);

 // tells applet to expect action from TextField

message.requestFocus();

}

public void actionPerformed(ActionEvent e)

{ // This method performs the action when the

// event occurs

String name = message.getText();

greeting.setText("Hi " + name);

}

}

Exercise 1:
Try to determine what the code produces in the Window. Write (or draw) what you expect.

Exercise2:
Run the program and see if the results match your answer in Exercise 1.

Exercise3:
Alter the program so that a new label is created and added that will hold the name input by the user. It is added to the Window without replacing any other label. Also add code to invalidate the Window and then validate it again.

Exercise 4:
Give comments to each statement in the program.

Lab 12.2 Interactive Applets that Calculate
Bring in the class SeminarTotal.java and SeminarTotal.htm from Lab12 folder. The code is as follows:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class SeminarTotal extends Applet implements ActionListener

{

Label seminarName = new Label ("Drama Workshop");

Button calculate = new Button("Calculate");

Label prompt = new Label

("Enter the number of people attending");

TextField numRegs = new TextField(5);

Label perPerson = new Label("Plan Now ");

Label total = new Label("Multiple registration");

Font bigFont = new Font("Helvetica", Font.ITALIC, 24);

static final private int INDIVIDUALFEE = 40;

public void init()

{

seminarName.setFont(bigFont);

add(seminarName);

add(prompt);

add(numRegs);

numRegs.requestFocus();

add(calculate);

calculate.addActionListener(this);

numRegs.addActionListener(this);

add(perPerson);

add(total);

}

public void start()

{

numRegs.setText("");

 invalidate();

validate();

}

public void actionPerformed(ActionEvent e)

{

int guests = Integer.parseInt(numRegs.getText());

int eventFee = 0;

eventFee = guests * INDIVIDUALFEE;

perPerson.setText("$" + INDIVIDUALFEE + " per person");

total.setText("event cost $" + eventFee);

}

}

Exercise 1:
Go through the code very carefully and make sure you understand every statement. Give comments for each statement.

Exercise 2:
Alter the program so that the user inputs the price of the event instead of having it as a constant within the program. You will need to create other components such as a Label asking for the input and a Text Field to accept the data.

Lab 12B
Lab 12.3 Relocating a component
Bring in the class Mobile.java and Mobile.htm from the Lab 10 folder. The code is as follows:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class Mobile extends Applet implements ActionListener

{

Label header = new Label("Mobile Component");

Button press = new Button("Press here");

int xLoc = 10;

int yLoc = 20;

public void init()

{

// Fill in the code that adds the

// Label and Button components to the page

// Fill in the code that tells the applet

// to expect an action on the press Button

}

public void actionPerformed(ActionEvent e)

{

header.setLocation(xLoc = xLoc + 10, yLoc = yLoc + 10);

// Fill in the code that will disenable the

// press Button once the y location equals or

// exceeds 200

}

}

Exercise1:
Fill in the code requested by the statements in Bold.

Exercise 2:
Give comments for each instruction. Make sure you understand the entire code.

Exercise 3:
Run the program. Keep pressing the button until it fades. It should fade before the message exits the applet area.

Lab 12.4 Student Generated Code
Develop an interactive, calculate event-driven applet and an appropriate HTML code that will do the following:

Have a title:

Invoice

Please input product number (Text Field)

Please input price of item (Text Field)

Please input quantity (Text Field)

 (Button that says Calculate)

The product number is (prints user input for product number)

The price per item is (prints user input for price of item)

The quantity is (prints user input for quantity)

The total price is (prints the calculated price found by price of item * quantity)

Lab 13

Overloading Methods
Purpose
1.
To work with Overloading methods and constructors
2.
To understand scope

Procedure
A.
Students should read Lessons 37 through 39 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 37 - 39
 10 min.

LESSON 13A

 Lab 13.1

 Money Exchange program
Knowledge of overloading Constructors
 15 min.

 Lab 13.2

Money Exchange applet
Knowledge of interactive applets
 35 min.

LESSON 13B

 Lab 13.3

Circle input
Knowledge of overloading Constructors
 15 min.

 Lab 13.4

Student Generated Code
Knowledge of interactive applets
 40 min.

Pre-lab 13 Writing Assignment
Fill in the blank questions

1.
Code between a pair of curly brackets is called a ________________.
2.
The ___________ of an identifier (variable, constant etc.) is an indication of where it can be accessed in a program.

3.
If a variable is declared within a class and the same variable name is used within a method of the class, the variable in the ____________ takes precedence.

4.
Two or more methods may have the same name as long as their arguments differ in _______ or _________ _________.

5.
_________________ is the name used for having more than one method with the same name.

6.
____________ constructors are constructors that have no parameters.

7.
Overloading methods runs the risk of creating a(n) ________________ situation in which the compiler cannot determine which method to call.

8.
Applets studied in this class extends the ____________ class.

9.
Applets can also _______________ such classes as ActionListener; however these must be implemented within the class.

10.
Constructors are called during their ______________ and _________________.

Lab 13A

Lab 13.1
Money Exchange Program
Bring in the MoneyExchange.java class from folder 13a. The code is as follows:

// This program will convert dollars to lire

// and francs

import java.io.*;

public class MoneyExchange

{

// Constants Lire and France dollar conversion

static final private double DOLLAR_LIRE = 2048;

static final private double DOLLAR_FRANC = 6.937;

// Private data instance variables

private double dollars;

private double lire;

private double francs;

// Constructors

public MoneyExchange()

{

dollars = 0;

}

// Fill in the code to develop another

// constructor that takes a double parameter

// called dough. That value is assigned to dollars

public void convertLire()

 {

 lire = dollars * DOLLAR_LIRE;

 }

// Fill in the code to develop a method called

// convertFrancs that determines the franc equivalent

public void printDollar()

{

System.out.println("The value in Dollars is " + dollars);

}

// Fill in the code to make two printing methods

// The first will print the lire and the second the

// franc values

public static void main(String[] args)

{

// Fill in the code to declare and instantiate

// an object called dough that will set dollars to

// 7.80

// Fill in the code to declare and instantiate

// an object called dough1 that will have dollars

// set to the default value

// Fill in the code that will call the two

// convert methods and all three print methods for

// both dough and dough1

}

}

Exercise 1:
Fill in the code in bold so that the following output is produced:

The value in Dollars is 7.8

The value in Lire is 15974.4

The value in Francs is 54.1086

The value in Dollars is 0.0

The value in Lire is 0.0

The value in Francs is 0.0
Lab 13.2
Money Exchange Applet
Bring in the class MoneyApplet.java from the Lab 13 folder. You can also bring in MoneyApplet.htm.

The code for MoneyApplet.java is as follows:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class MoneyApplet extends Applet implements ActionListener

{

static final double LIRE_CONVERSION = 2048;

static final double FRANC_CONVERSION = 6.937;

Label directions =

new Label("Please input the dollars to be converted");

 TextField dollarAmt = new TextField(10);

 Button conversion = new Button("Conversion");

 Label lireField = new Label(" ");

 Label francField = new Label(" ");

 Label dollarField = new Label(" ");

public void init()

{

// Fill in the code to add all the

// components declared above

// Fill in the code to make the cursor

// start in the dollarAmt Text Field

// Fill in the two commands (one for conversion)

// and one for dollarAmt that tell the applet

// to expect things to happen

}

public void start()

{

dollarAmt.setText("");

invalidate();

validate();

}

public void actionPerformed(ActionEvent e)

{

Double tempmoney = Double.valueOf(dollarAmt.getText());

double money = tempmoney.doubleValue();

double lire = 0;

double francs = 0;

// Fill in the code to find lire and francs

dollarField.setLocation(30,60);

dollarField.setText("Dollars = " + money);

// Fill in the code to set lireField at 30, 90

// and the code that will print (with label) its value

// Fill in the code to set francField at 30, 120

// and the code that will print (with label) its value

}

}

Exercise 1:
Fill in the code in bold and then create an applet project (with the htm code) to run the applet which will have the user input the dollar amount and then display the lire and franc equivalent of that amount.

Lab 13B
Lab 13.3
Circle input

Bring in the Circles class from lab folder 13. The code is as follows:

import java.io.*;

public class Circles

{

static private final double PI = 2.14;

private int centerX;

private int centerY;

private double radius;

private double area;

private double circumference;

public Circles(int x, int y, double rad)

{

// Fill in the code that will assign x

// to center X, y to centerY and rad to radius

}

// Fill in the code to develop two more constructors

// one will have no parameters and the other will have

// two parameters (x & y). The default values are

// x and y are both 0 and radius is 1

// Develop two methods. One called findCircumference

// will find the circumference of the circe. The other

// called findArea will find the area of the circle

public void printCircles()

{

System.out.println("The center of the circle is at "

 + centerX + " ," + centerY);

System.out.println("The radius of the circle is " + radius);

System.out.println("The area of the circle is " + area);

System.out.println("The circumference of the circle is "

 + circumference);

System.out.println();

}

public static void main (String[] args)

{

 // Find the code to declare and instantiate

// a Circles object called curve that has the

// values of 20,30 for the center and radius 8

// Find the code to declare and instantiate a

// Circles object called curve2 that has a center

// at 20, 40 and uses the default radius

// Find the code to declare and instantiate a

// a Circles object called curve3 that uses all

// the default values

// Find the code that calls findCircumference

// FindArea and printCircles for all three objects.

}

}

Exercise1:
Fill in the code in bold to complete the program which develops several constructors for the Circles class.

Run:

The center of the circle is at 20 ,30

The radius of the circle is 8.0

The area of the circle is 136.96

The circumference of the circle is 34.24

The center of the circle is at 20 ,40

The radius of the circle is 1.0

The area of the circle is 2.14

The circumference of the circle is 4.28

The center of the circle is at 0 ,0

The radius of the circle is 1.0

The area of the circle is 2.14

The circumference of the circle is 4.28
Lab 13.4
Student Generated Code

Option 1:
Develop an applet for Lab 13.3 which will input a center and a radius and will then find the area and circumference of the circle.

Option 2:
Develop an application program that determines the perimeter and area of a rectangle. It should include a constructor that has two arguments (length and width), a constructor that has one argument (the length but uses 1 as a default width) and a constructor with no arguments that uses 1 as the default for length and width.

Option 3:
Develop an applet that accepts length and width of a rectangle from the keyboard and determines the perimeter and area of the rectangle. It also states whether the rectangle is a square.

Lab 14

Search & Sorting Methods
Purpose
1.
To work with Search Routines
2.
To work with Bubble Sort

Procedure
A.
Students should read Lessons 40 through 42 before coming to lab

B.
Students should complete the Pre-lab Writing Assignment before coming to lab

Contents
Pre-requisites
Approximate completion time
Page Number
Check when done

Pre-lab Writing Assignment
Read Lessons 40 - 42
 10 min.

LESSON 14A

 Lab 14.1

 Search Routine
Knowledge of Search routines

 15 min.

 Lab 14.2

Bubble Sort
Knowledge of Bubble Sort
 35 min.

LESSON 14B

 Lab 14.3

Stock-Number & Price Sort
Knowledge of Sort routines
 50 min.

Pre-lab Writing Assignment
Fill in the blank questions

1.
A ____________ algorithm is a procedure for locating a specific datum from a collection of data.

2.
The advantage of a linear search is that it is __________.
3.
The disadvantage of a linear search is that it is ____________.

4.
The advantage of a binary search or a linear search is that a binary search is ____________.

5.
An advantage of a linear search over a binary search is that the data must be __________ for a binary search.

6.
 To sort data stored in an array, one uses a ____________ algorithm.

7.
The ________ sort is a simple algorithm used to arrange data in either ascending (lowest to highest) or descending (highest to lowest) order

8.
Fill in the blanks of the following swap code:

_____ = numA;

numA = numB;

numB = _______

9.
Array of Objects can be created and sorted on a particular _____________.

10.
____________ element of the array of objects have to be constructed.

Lab 14A

Lab 14.1
Search Routine
Bring in program BinarySearch.java from Lab 14 folder. This the Binary Search routine studied in Lesson 42. The code is as follows:

import java.io.*;

public class BinarySearch

{

private int location; // location in array of item

public void Binary (int[] array, int number)

{

location = setBinary(array, number);

}

public int getLocation()

{

return location;

}

public int setBinary(int [] array, int number)

{

int first = 0; // first element of the list

int last = array.length -1; // last element of the list

int middle; // middle element of the array

int size;

size = array.length;

while (first <= last)

{

middle = first + (last - first) / 2;

 // find the middle element

if (array[middle] == number)

 return middle;

else if (array[middle] < number)

 last = middle -1;

else

first = middle + 1;

}

return -1;

}

public static void main(String[] args) throws IOException

{

BufferedReader dataIn = new BufferedReader(new InputStreamReader(System.in));

String numberStr = new String();

String wait = new String();

int number;

int[] stockNumber = {302, 204, 108, 107, 106, 104};

double[] price = {3.22, 3.44, 20.33, 78.32, 5.78, 9.87};

BinarySearch search1 = new BinarySearch();

System.out.println("Please input the stock number");

numberStr = dataIn.readLine();

number = Integer.parseInt(numberStr);

search1.Binary(stockNumber, number); // call to Binary Search

if (search1.getLocation() == -1)

System.out.println("Item not found");

else

System.out.println("The price is " + price[search1.getLocation()]);

wait = dataIn.readLine();

}

}

Exercise 1:
The variable middle is declared as an integer. The program contains the assignment statement middle = first + (last - first) / 2; Is the right side of this statement necessarily an integer in computer memory? Explain how the middle value is determined by the computer. How does this line of code affect the logic of the program? Remember that first, last and middle refer to the array positions, not the values stored in those array positions.

Exercise 2:
Alter the code in the following manner:

Change the following code:

int[] stockNumber = {302, 204, 108, 107, 106, 104};

double[] price = {3.22, 3.44, 20.33, 78.32, 5.78, 9.87};

to

int[] stockNumber = {34,19,19,18,17,13,12,12,12,11,9,5,3,2,2};

double[] price = {34.00, 19.01, 19.02,18,17,13,12.01,12.02,

 12.03,11,9,5,3,2.01,2.02};

Notice that we now have several stock numbers that are the same but have a different price (not a practical situation but one we use for this particular lesson).

Search the stock number 19 and 12 and record the output in each case.

Note that both 19 and 12 are repeated in the array. Which occurrence of 19 did the search find?

Which occurrence of 12 did the search find?

Explain the difference.

Lab 14.2
Bubble Sort
Bring in BubbleSort.java from the Lab 14 folder. This is the Bubble Sort program discussed in Lesson 42. The code is as follows:

import java.io.*;

public class BubbleSort

{

private int size; // Number of elements in array

private BubbleSort()

{

size = 0;

}

private BubbleSort(int num)

{

size = num;

}

public void setSize(int x)

{

size = x;

}

public void sortIt(int [] array)

{

int swap, temp;

int bottom = size - 1;

do

{

swap = 0;

for (int count = 0; count < bottom; count++)

{

if (array[count] > array[count+1])

{

temp = array[count];

array[count] = array[count+1];

array[count + 1] = temp;

swap = 1; // indicates that a swap occured

}

}

bottom--;

// bottom is decremented by 1 since eachpass through

// the array adds one more value that is set in order

}while (swap != 0); // loop repeates until a pass through the

 // the array with no swaps occurs

}

public void displayArray(int [] array)

{

for (int count = 0; count < size; count++)

System.out.println(array[count] + " ");

}

public static void main(String[] args) throws IOException

{

BufferedReader dataIn =

new BufferedReader(new InputStreamReader(System.in));

// This will get numbers from the keyboard and

// store them in an array called stockNumber.

// An object is created that will call class methods

// to sort the numbers

int numberOfElements = 0; // counts the number of elements in

 // the array

String numIdstr; // String of number of elements

int numId; // an individual stock number

int [] stockNumber = new int[50];

BubbleSort sort1 = new BubbleSort(); // create an object

System.out.println("Please input a stock number");

System.out.println("Input a -99 to stop");

numIdstr = dataIn.readLine();

numId = Integer.parseInt(numIdstr);

while (numId != -99)

{

stockNumber[numberOfElements] = numId;

numberOfElements++;

System.out.println("Please input a stock number");

System.out.println("Input a -99 to stop");

numIdstr = dataIn.readLine();

 numId = Integer.parseInt(numIdstr);

}

sort1.setSize(numberOfElements);

sort1.sortIt(stockNumber);

System.out.println("Here are the stock numbers in order ");

sort1.displayArray(stockNumber);

System.out.println("Hit any key to exit");

numIdstr = dataIn.readLine();

 }

}

Exercise 1:
Re-write the sort program so that it orders integers from largest to smallest rather than smallest to largest.

Exercise 2:
Modify the program so that it prints the array at each step of the algorithm. Try sorting the following array.

23, 0, 45, -3, -78, 1, -1, 9

Lab 14B

Lab 14.3
Stock-Number & Price Sort
Develop a program that will allow the user to input a stock item id number and the price associated with that item. You may use the Keyboard class. The program will then sort the stock id numbers (in ascending order) and print them (along with their correct price) in that order.

Sample run:

Please input a stock Id number

Input a -99 to stop

89

Please input a price for this item

89.89

Please input a stock Id number

Input a -99 to stop

49
Please input a price for this item

49.49
Please input a stock Id number

Input a -99 to stop

99
Please input a price for this item

99.99
Please input a stock Id number

Input a -99 to stop

23
Please input a price for this item

23.23
Please input a stock Id number

Input a -99 to stop
-99

Here are the stock id numbers and prices in stock id order

23
23.23

49
49.49

89
89.89

99
99.99

Hit any key to exit
The following will give you a start. It describes the class but makes you fill in the main program:

import java.io.*;

import Keyboard;

public class StockArray

{

private int stockId;

private double price;

public StockArray()

{

stockId = 0;

price = 0;

}

public StockArray (int idNum, double cost)

{

 stockId = idNum;

 price = cost;

 }

public int getStockId()

{

 return stockId;

 }

public double getPrice()

{

 return price;

}

public void setId(int id)

{

 stockId = id;

}

public void setPrice(double cost)

{

price = cost;

}

// Fill in the rest of the program

Appendix A
Reserved Words in Java
The following are reserved words in Java.

abstract

if

this

implements

throw

boolean

import

throws

break

inner

transient

byte

instanceof

try

byvalue

int

interface

var

case

void

cast

long

volatile

catch

char

native

while

class

new

const

null

continue

operator

default

outer

do

double

package

private

else

protected

extends

public

final

rest

finally

return

float

for

short

future

static

super

generic

switch

goto

synchronized

Appendix B

Eclipse
Lab 1.1
In this first lab, you will become acquainted with the Eclipse software package that will allow you to create, compile and run Java programs.

I.

1.
Be sure to read Lessons 1-3 and do the Pre-lab Writing Assignment before coming to class.

2.
Make sure you have a working account and password or some means of logging on to your particular computer system. Check with your instructor.

II.
Eclipse

A.

Make sure you are logged on the system.

B.
Once your are in the Eclipse package you are ready to open or create files. All files are confined within a project. You start a session when you open a New Project.

C.
Click on File Then New then New Project

 A New window appears in which you will need to give the new project a name. For most labs you can have one project with several different classes for the various exercises. For example in the first lab you will call the project Lab 1.

D.
Type Lab 1 (or whatever name you want to give the project) here. Then click Finish.

Most of the labs require you to either work on some code already there or to develop your own program from scratch.

All Java code is contained in what is called a class. You will need to create a class for the project.

E.
Highlight the Project in which you wish to add a class. Then right click the mouse. Then select New–>class.

F. Type in the name of the class. In this case it is First. In each exercise you should type whatever name is given in your lab for that program. Then click Finish.

Eclipse will start the program by giving you the name of the class.

If you are bringing code in from somewhere go to the next page step I.

Writing a program from scratch.

G. If you are writing a program from scratch then type in everything else that is needed.

H. Then click the save button or click File–>save

Go to step N.

 Bringing in code.

All existing code is located on the K drive.

K–>Henson–>COSC–>COSC117–>

DeFino–>COSC117 Labs–>

They are divided into folders indicate the lab you are working on. Lab 1, Lab 2 etc.

I. If the file you want is called First and you are working in Lab 1 go to Lab 1 and highlight that file.

J. You should open it in a text editor such as Notepad++. Never open it in a word processing package such as Word or WordPerfect.

K. You then can copy the entire file. Make sure the entire file is copied. Highlight all the code and hit ctrl-C.

L. Then get back to Eclipse and highlight what was placed there by Eclipse when you created the class and paste the code (Ctrl-V).

M. Save the file. Click the Save icon (3rd from right) or click File–>save.

Running the Program

N. Now click on the Run tab and then click run.

You should see the expected output in the output window. It should say

“Now is the time for all good men

to come to the aid of their party”.

Lab 1.2

Running a program with a syntax error

1.
Add a class named Semiprob to Lab1 project.

2.
Bring in the file from Lab 1 called Semiprob.java. Follow directions I through N above. Save it and run it.

3.
This time the program has syntax errors. Anytime a red mark appears, it means there is something wrong. When you tried to run it, you got a message that said there was an error in the project. If you click on proceed, it will try to run the program but give an error message instead.

4.
You must fix all syntax errors, save the program again and run it again.

Lab 1.3
Running a program with a run time error
1.
Add a class named Runprob to Lab1 project.

2.
Bring in the file from Lab 1 called Runprob.java. Follow directions I through N above. Save it and run it.

3.
This time the program has a run time error. You are not told this but you get weird results. In this case you have a number that equals Infinity. That is because the program tried to divide by 0. Correct this by having the code divide by 2 instead of 0.

4.
Save the program again and run it again.

Lab 1.4

Writing your first program.

 You can create this program with a class in the Lab1 project or you can create a new project.

1.
If you are creating a New Project follow steps A through H above.

2.
If you are placing this in the Lab 1 project follow steps E through H above.

3.
Now write the code that will produce “Hello World” to the output file.

4.
Save the file and run the program.

Appendix C

Common Math Class Methods
Method

Meaning

abs(x)

Absolute value of x

acos(x)

Arccosine of x

asin(x)

Arcsine of x

atan(x)

Arctangent of x

ceil(x)

Smallest integral value not less than x

cos(x)

Cosine of x

exp(x)

Exponent, where e is the base of the natural logarithms

floor(x)

Largest integral value not greater than x

log(x)

Natural logarithm of x

max(x,y)

Larger of x and y

min(x,y)

Smaller of x and y

pow(x,y)

x raised to the y power

random()

Random double number between 0.0 and 1.0

rint(x)

Closet integer to x (x and return value is double)

round(x)

Closet integer to x (where x is float or double and return value is integer or long)

sin(x)

Sine of x

sqrt(x)

Square root of x

tan(x)

Tangent of x

Appendix D

Keyboard Class

import java.io.*;

import java.text.*;

class Keyboard

{

private static BufferedReader inputStream

= new BufferedReader(new InputStreamReader(System.in));

private static NumberFormat aNumberFormatter

= NumberFormat.getInstance();

// Methods String

public static String readString(String prompt)

throws java.io.IOException

{

System.out.print(prompt);

System.out.flush();

return inputStream.readLine();

}

public static String readString()

throws java.io.IOException

{

return readString("");

}

// Methods Long

public static long readLong(String prompt)

throws java.io.IOException

{

long value=0;

boolean readAgain;

do

{

try

{

readAgain = false;

value

 = aNumberFormatter.parse(readString(prompt)).longValue();

}

catch (ParseException e)

{

System.out.println("Please enter an integer");

readAgain = true;

}

} while (readAgain);

return value;

}

public static long readLong()

throws java.io.IOException

{

 return readLong("");

}

// Methods int

public static int readInt(String prompt)

throws java.io.IOException

{

return (int)readLong(prompt);

}

public static int readInt()

throws java.io.IOException

{

return (int)readLong("");

}

// Methods Short

public static short readShort(String prompt)

throws java.io.IOException

{

return (short)readLong(prompt);

}

public static short readShort()

throws java.io.IOException

{

return (short)readLong("");

}

 // Methods Byte

public static byte readByte(String prompt)

throws java.io.IOException

{

return (byte)readLong(prompt);

}

public static byte readByte()

throws java.io.IOException

{

return (byte)readLong("");

}

// Methods double

public static double readDouble(String prompt)

throws java.io.IOException

{

double value=0.0;

boolean readAgain;

do

{

try

{

readAgain = false;

value = aNumberFormatter.parse(readString(prompt)).doubleValue();

}

catch (ParseException e)

{

System.out.println("Please enter a number");

readAgain = true;

}

} while (readAgain);

return value;

}

public static double readDouble()

throws java.io.IOException

{

 return readDouble("");

}

// Methods Float

public static float readFloat(String prompt)

throws java.io.IOException

{

return (float)readDouble(prompt);

}

public static float readFloat()

throws java.io.IOException

{

return (float)readDouble("");

}

}

Appedix E

Algorithms

Before writing a program in a computer language it is important to develop a plan of attack. An algorithm is a method for solving a problem using a finite sequence of instructions. A recipe is an example of an algorithm for preparing food. There are various algorithmic methods used in computer science. This lesson uses the concept of a solution tree using a step-wise- refinement or top-down approach.

There are several steps involved in developing an algorithm for a computer program and they are listed and explained below:

Example 2.1

Steps

 Example

1)
State the problem

Write a program to compute the passing average and the

 number of failing grades for a given class.

2) Clarify the problem
Clarification: A negative number will indicate the end of data. A passing grade is a grade >= 60

A.
Show the sample input
Sample Input

85

55

95

75

32

 -1 sentinel data

4)
 Show the sample output Sample output

85

2

5) List the input variables-
input variable grade

 (variables that have to be read in)

 choose descriptive names for all memory locations

6)
List the output variables passAvg numFailing

 (variables that will be printed)

 choose descriptive names

7) List other variables. numPassing passingSum

 (variables that are needed to help solve the problem but are not read in and not

 necessarily printed out)

8)
Draw the solution using a step-wise refinement picture. (explained on next page)

Step 8

Rules of the Tree

1)
Maximum 5 branches per node

2)
Only one control structure per node

3)
Keep the vertical structure

4)
No fundamental instruction from the root

Algorithm symbols used

ß assignment statement used in algorithm for the assignment operation =

 Conditional statement used in algorithm for the if and if else statement

 Loop statement used in algorithm for the while for and do while statement

root--shorthand statement of the whole program

leaves--fundamental instruction

other nodes-intermediate nodes in the tree

 read(grade)

 (prime the read)

 While (grade >0)

passingSum=0 numberFailing=0 numPassing=0

 passAvg=passingSum/numPassing write(passAvg,

 numFailing)

 grade >=60

 True False

passingSum=passingSum + grade numPassing++ numFailing=numFailing + 1

 read(grade)

9)
Write the algorithm-found by listing leaves from left to right using appropriate indention of the solution tree from step 8.

Algorithm

passingSum<----0

numberPassing<---0

numberFailing<---0

read (grade) //priming the read

while (grade >0)

 if (grade >=60)

 passingSum<---passingSum + grade

 numberPassing<---numbePassing+1

 else

 numFailing<---numFailing + 1

 read(grade)

passAvg<----passingSum/numberPassing

write(passAvg)

write(numFailing)

10) Test the Algorithm using an execution trace

85 55 95 75 32 -1

Set up columns for each of the variables and keep track of their values as the program is executed.

passingSum numberPassing numFailing
grade passAvg

initial values 0

 0

 0
 X X

read grade

85

passing add 85 1

read

55

not passing

add 1 to numFailing

1

read

95

passing
 180
 2

read

75

passing 255 3

read

32

not passing 2

read

-1

Less then 0

Fall out of loop & solve passAvg 255/3
 85

Write passAvg and number Failing 85 2

Suppose our example data file had the following test grades (all of which are failing grades)

32 18 59 58 49

This is skewed data. But our program divides by number of passing grades which in this case would be 0 so our computer would be asked to divide by 0 which is impossible.

Prog
ithm: Calculation of Gross Pay

1.Write “Please input the number of hours worked”

2.Read hours

3.Write “Please input the pay per hour”

4.Read payRate

5.Compute grossPay=payRate * hours

6.Write “The grossPay is “ grossPay

�

�

�

�

�

�

� EMBED ���

� EMBED ���

� EMBED ���

� EMBED ���

� EMBED ���

�

Java Program

InputStreamReader

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Read and Process Passing Grades

�

�

�

�

Process Grades

Write out information

Initialize Data

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

rammers have established the convention of beginning a class name with an uppercase letter.

�Appendix A has a list of reserved words in Java.

�Appendix A has a list of reserved words in Java.

�Recall the method names use the same convention as variables. They start with lowercase letters. Method names consisting of more than one word concatenated together has the first letter of all word AFTER the first in uppercase. Everything else is lowercase.

�Recall that class names use uppercase for the first letter of each word in the name but lowercase for everything else.

�In Eclipse you do not have to import the file if keyboard is part of the same project.

�Appendix F has the complete code for the Keyboard class

�Some students actually add one more location and then ignore location 0, letting 1 be the first location. In the above example such a process would use the following declaration:

int[] ageFrequency = new int[101]; and use only the indexes 1 through 100. This practice is not encouraged. Our examples will use location 0.

�Priming the read for a while loop means having an input just before the loop condition (just before the while) and having another one as the last statement in the loop.

�In this case name1 is the calling object since it precedes the method name and name2 is the argument object since it is enclosed in the parenthesis. callingObject.methodName(argumentObject);

�

_974258177.unknown

_974258179.unknown

_974258180.unknown

_974258178.unknown

_974258176.unknown

