Exercises:

1. Consider a program that will keep track of the items in a school’s library. Draw a class hierarchy, including a base class, for the different kinds of items. Be sure to also consider items that cannot be checked out.

	Solution:

[image: image1.jpg]Library ltem

title

author

ISBN
acquisition date
tracking id

Withdrawn ltem

Reference Iltem

withdrawn on

shelf location

Circulating ltem

Book

borrower
date borrowed
date due

dewey decimal classification

CD
composer

Video

director

2. Implement your base class for the hierarchy from the previous exercise.

	Solution:

See the code in LibraryItem.java.

3. Draw a hierarchy for the components you might find in a graphical user interface. Note that some components can trigger actions. Some components may have graphics associated with them. Some components can hold other components.

	Solution:

Here is part of a such a hierarchy. There are many other types of components.

[image: image2.jpg]Component

location

size

image

EventGenerating Label
event text
Button TextField
name text

Container

list of comeonents

4. Suppose we want to implement a drawing program that creates various shapes using keyboard characters. Implement an abstract base class DrawableShape that knows the center (two integer values) and the color (a string) of the object. Give appropriate accessor methods for the attributes. You should also have a mutator method that moves the object by a given amount.

	Solution:

See the code in DrawableShape.java.

5. Create a class Square derived from DrawableShape, as described in the previous exercise. A Square object should know the length of its sides. The class should have an accessor method and a mutator method for this length. It should also have methods for computing the area and perimeter of the square. Although characters are taller than they are wide—so the number of characters in the vertical sides will differ from the number in the horizontal sides—you need not worry about this detail when drawing the square.

	Solution:

See the code in Square.java.

6. Create a class SchoolKid that is the base class for children at a school. It should have attributes for the child’s name and age, the name of the child’s teacher, and a greeting. It should have appropriate accessor and mutator methods for each of the attributes.

	Solution:

See the code in SchoolKid.java.

7. Derive a class ExaggeratingKid from SchoolKid, as described in the previous exercise. The new class should override the accessor method for the age, reporting the actual age plus 2. It also should override the accessor for the greeting, returning the child’s greeting concatenated with the words “I am the best.”

	Solution:

See the code in ExaggeratingKid.java.

8. Create an abstract class PayCalculator that has an attribute payRate given in dollars per hour. The class should also have a method computePay(hours) that returns the pay for a given amount of time.

	Solution:

See the code in PayCalculator.java.

9. Derive a class RegularPay from PayCalculator, as described in the previous exercise. It should have a constructor that has a parameter for the pay rate. It should not override any of the methods. Then derive a class HazardPay from PayCalculator that overrides the computePay method. The new method should return the amount returned by the base class method multiplied by 1.5.

	Solution:

See the code in RegularPay.java.
See the code in HazardPay.java.

10. Create an abstract class DiscountPolicy. It should have a single abstract method computeDiscount that will return the discount for the purchase of a given number of a single item. The method has two parameters, count and itemCost.

	Solution:

See the code in DiscountPolicy.java.

11. Derive a class BulkDiscount from DiscountPolicy, as described in the previous exercise. It should have a constructor that has two parameters, minimum and percent. It should define the method computeDiscount so that if the quantity purchased of an item is more than minimum, the discount is percent percent.

	Solution:

See the code in BulkDiscount.java.

12. Derive a class BuyNItemsGetOneFree from DiscountPolicy, as described in Exercise 10. The class should have a constructor that has a single parameter n. In addition, the class should define the method computeDiscount so that every nth item is free. For example, the following table gives the discount for the purchase of various counts of an item that costs $10, when n is 3:

	Solution:

See the code in BuyNItemsGetOneFree.java.

13. Derive a class CombinedDiscount from DiscountPolicy, as described in Exercise 10. It should have a constructor that has two parameters of type DiscountPolicy. It should define the method computeDiscount to return the maximum value returned by computeDiscount for each of its two private discount policies. The two discount policies are described in Exercises 11 and 12.

	Solution:

See the code in CombinedDiscount.java.

14. Define DiscountPolicy as an interface instead of the abstract class described in Exercise 10.

	Solution:

See the code in DiscountPolicy.java.

15. Create an interface MessageEncoder that has a single abstract method encode(plainText), where plainText is the message to be encoded. The method will return the encoded message.

	Solution:

See the code in MessageEncoder.java.

16. Create a class SubstitutionCipher that implements the interface MessageEncoder, as described in the previous exercise. The constructor should have one parameter called shift. Define the method encode so that each letter is shifted by the value in shift. For example, if shift is 3, a will be replaced by d, b will be replaced by e, c will be replaced by f, and so on. Hint: You may wish to define a private method that shifts a single character.

	Solution:

See the code in SubstitutionCipher.java.

17. Create a class ShuffleCipher that implements the interface MessageEncoder, as described in Exercise 15. The constructor should have one parameter called n. Define the method encode so that the message is shuffled n times. To perform one shuffle, split the message in half and then take characters from each half alternately. For example, if the message is “abcdefghi”, the halves are “abcde” and “fghi”. The shuffled message is “afbgchdie”. Hint: You may wish to define a private method that performs one shuffle.

	Solution:

See the code in ShuffleCipher.java.

Projects:

1. Define a class named Employee whose objects are records for employees. Derive this class from the class Person given in Listing 8.1. An employee record inherits an employee’s name from the class Person. In addition, an employee record contains an annual salary represented as a single value of type double, a hire date that gives the year hired as a single value of type int, and an identification number that is a value of type String. Give your class a reasonable complement of constructors, accessor methods, and mutator methods, as well as an equals method. Write a program to fully test your class definition.

	Notes:

This project should be pretty straightforward. The solution shown here has nine constructors, including a default that specifies nothing. Since it did not seem reasonable to have salary, hire date or social security numbers without a name, the remaining constructors all require at least the name to be specified. Note the use of methods from the base class, Person. For example, super.writeOutput()is used to write just the name (and avoid using the local version in Employee that writes out all the parameters).

	References:

Listing 8.1

	Solution:

See the code in Employee.java and EmployeeTest.java.

3. Define two derived classes of the abstract class ShapeBase in Listing 8.19. Your two classes will be called RightArrow and LeftArrow. These classes will be like the classes Rectangle and Triangle, but they will draw arrows that point right and left, respectively. For example, the following arrow points to the right:

The size of the arrow is determined by two numbers, one for the length of the “tail” and one for the width of the arrowhead. (The width is the length of the vertical base.) The arrow shown here has a length of 12 and a width of 7. The width of the arrowhead cannot be an even number, so your constructors and mutator methods should check to make sure that it is always odd. Write a test program for each class that tests all the methods in the class. You can assume that the width of the base of the arrowhead is at least 3.

	Notes:

The problem description requires that the base width be an odd number so the triangle is symmetrical, but it does not say exactly how to ensure this. One option is to test the user’s input and display an error message if it is even, then prompt for re-entry of an odd number. Another approach is to adjust the width by adding or subtracting one if it is even, making sure it does not go below 3 if subtraction is used. The approach taken in the solution shown here is to add 1 if the user inputs an even number and, since it is always a good idea to keep the user informed, a message tells the user that the width was adjusted. Getting the display right on this one is tricky! It may take some trial and error to get it worked out, so it is especially helpful to implement it one step at at time, being patient and using System.out.println and System.out.print to obtain the right output. Consider doing the implementation in the following steps:

· tail of right arrow

· lines before the tail for a base width of at least 5

· lines after the tail for the same base width

· first line of left arrow for a base width of at least 5

· top lines of left arrow for the same base width

· line including the tail for the same base number
· bottom lines for the same base number

	References:

Listing 8.19

	Solution:

See the code in LeftArrow.java, LeftArrowTest.java, RightArrow.java, and RightArrowTest.java.

4. Define a class named Doctor whose objects are records for a clinic’s doctors. Derive this class from the class Person given in Listing 8.1. A Doctor record has the doctor’s name—defined in the class Person—a specialty as a string (for example Pediatrician, Obstetrician, General Practitioner, and so on), and an office visit fee (use the type double). Give your class a reasonable complement of constructors and accessor methods, and an equals method as well. Write a driver program to test all your methods.

	Notes:

This project is a simple variation of Project 1. Note that two of the Doctor constructors have the same two parameter types, String and double, but in opposite order, so they are clearly distinct to the compiler.

	References:

Project 8.1

	Solution:

See the code in Doctor.java and DoctorTest.java.

5. Define two classes, Patient and Billing, whose objects are records for a clinic. Derive Patient from the class Person given in Listing 8.1. A Patient record has the patient’s name (defined in the class Person) and identification number (use the type String). A Billing object will contain a Patient object and a Doctor object (from Programming Project 4). Give your classes a reasonable complement of constructors and accessor methods, and an equals method as well. First write a driver program to test all your methods, then write a test program that creates at least two patients, at least two doctors, and at least two Billing records and then displays the total income from the Billing records.

	Notes:

This project sounds reasonable until an attempt is made to put Doctor and Patient objects in the Billing class. A Billing object actually needs just the doctor’s name, patient’s name, and doctor’s office fee. The approach taken in the solution shown here is to require a Doctor and a Patient object in the constructor for a Billing object, then use Doctor and Patient accessor methods to set the parameter values for the Billing object.

	References:

Listing 8.1, Project 8.1, Project 8.4

	Solution:

See the code in Patient.java, PatientTest.java, Billing,java, and BillingTest.java.

6. Create a base class called Vehicle that has the manufacturer’s name (type String), number of cylinders in the engine (type int), and owner (type Person given in Listing 8.1). Then create a class called Truck that is derived from Vehicle and has additional properties: the load capacity in tons (type double,

since it may contain a fractional part) and towing capacity in tons (type double).

Give your classes a reasonable complement of constructors and accessor methods, and an equals method as well. Write a driver program (no pun intended) that tests all your methods.

	Notes:

This project requires most of the same type of thinking as previous problems to write constructors, accessor and mutator methods except that one of Vehicle’s data members is an instance of a class rather than a fundamental data type (owner is an instance of the class Person). Operations involving the owner, therefore, must use the methods of the Person class. NOTE: early editions of the text may have an error in the definition of sameName()in Person. If the method definition is

return (this.name.equalsIgnoreCase(otherPerson.name));

it should be changed to

return (this.name.equalsIgnoreCase(otherPerson.gettName()));
The sameName() method is called in the code for the equals method of Vehicle to test if two vehicles have the same owner.

 A methodical approach that makes this problem manageable is to develop one method in Vehicle, then write a test for the method in VehicleTest and run it. Add the next method to Vehicle only when VehicleTest runs successfully. When all the methods for Vehicle have been written and tested with VehicleTest, then do a similar piece-wise development for Truck and TruckTest, first testing all the methods inherited from Vehicle, then writing one new method at a time and testing it before going on to the next.

	References:

Listing 8.1

	Solution:

See the code in Vehicle.java, VehicleTest.java, Truck,java, and TruckTest.java.

7. Create the classes RightTriangle and Rectangle, each of which is derived

from the abstract class ShapeBase in Listing 8.19. Then derive a class Square

from the class Rectangle. Each of these three derived classes will have two additional methods to calculate area and circumference, as well as the inherited methods. Do not forget to override the method drawHere. Give your classes a reasonable complement of constructors and accessor methods. The Square class should include only one dimension, the side, and should automatically set the height and width to the length of the side. You can use dimensions in terms of the character width and line spacing even though they are undoubtedly unequal, so a square will not look square (just as a Rectangle object, as discussed in this chapter, won’t look square.) Write a driver program that tests all your methods.

	Notes:

This project is most easily written by modifying the programs in the text. Base RightTriangle.java on Triangle.java (Listing 8.14), Rectangle.java on Rectangle.java (Listing 8.13), and MoreGraphicsDemo.java on TreeDemo.java (Listing 8.15). Square.java is derived from Rectangle, so it is just a matter of using the parent’s methods with both height and width set to the length of the side of the square. Note that special attention is required to draw the correct figures when the base, width, or height values are either 0 or 1.

	References:

Listing 8.13, Listing 8.14, Listing 8.15

	Solution:

See the code in RightTriangle.java, Rectangle.java, SquarePr7,java, and MoreGraphicsDemo.java.

8. Create a new class called Dog that is derived from the Pet class given in Listing 6.1 of Chapter 6. The new class has the additional attributes of breed (type String) and boosterShot (type boolean), which is true if the pet has had its booster shot and false if not. Give your classes a reasonable complement of constructors and accessor methods. Write a driver program to test all your methods, then write a program that reads in five pets of type Dog and displays the name and breed of all dogs that are over two years old and have not had their booster shots.
	Notes:

This project would be easier to do with an array of type Dog, but how to write class constructors for arrays has not been covered, so the code to process one dog has to be repeated five times.

	References:

Listing 6.1

	Solution:

See the code in Dog.java, DogTest.java, and DogBoosterShotList,java.

9. Create an interface MessageDecoder that has a single abstract method decode(cipherText), where cipherText is the message to be decoded. The

method will return the decoded message. Modify the classes SubstitutionCipher and ShuffleCipher, as described in Exercises 16 and 17, so that they implement MessageDecoder as well as the interface MessageEncoder that Exercise 15 describes. Finally, write a program that allows a user to encode and decode messages entered on the keyboard.

	Notes:

This project demonstrates creating multiple concrete classes that implement two related interfaces. The most difficult part of this implementation is handling characters in the substitution cipher.

	References:

Exercise 8.16, Exercise 8.17

	Solution:

See the code in MessageDecoder.java, ShuffleCipher.java, SubstitutionCipher.java, and CodeProgram.java.

10. For this Programming Project, start with implementations of the Person, Student, and Undergraduate classes as depicted in Figure 8.4 and the polymorphism demo in Listing 8.6. Define the Employee, Faculty, and Staff classes as depicted in Figure 8.2. The Employee class should have instance variables to store the employee ID as an int and the employee’s department as a String. The Faculty class should have an instance variable to store the faculty member’s title (e.g. "Professor of Computer Science") as a String. The Staff class should have an instance variable to store the staff member’s pay grade (a number from 1 to 20) as an int. Every class should have appropriate constructors, accessors, and mutators, along with a writeOutput method that outputs all of the instance variable values.
Modify the program in Listing 8.6 to include at least one Faculty object and at least one Staff object in addition to the Undergraduate and Student objects. Without modification to the for loop, the report should output the name, employee ID, department, and title for the Faculty objects, and the name, employee ID, department, and pay grade for the Staff objects.
	Notes:

The solution uses the class Employee2 to distinguish it from the Employee class from Programming Project 1.

	References:

Listing 8.6, Figure 8.2, Figure 8.4

	Solution:

See the code in Employee2.java, Faculty.java, Staff.java, and PolymorphismDemo.java.

11. Modify the Student class in Listing 8.2 so that it implements the Comparable interface. Define the compareTo method to order Student objects based on the value in studentNumber. In a main method create an array of at least 5 Student objects, sort them using Arrays.sort, and output the students. They should be listed by ascending student number. Next, modify the compareTo method so it orders Student objects based on the lexicographic ordering of the name variable. Without modification to the main method, the program should now output the students ordered by name.
	Notes:

This solution uses the class Student2 to distinguish it from the listing in the textbook. The solution is similar to Listing 8.18 and Listing 8.19.

	References:

Listing 8.2, Listing 8.18, Listing 8.19

	Solution:

See the code in Student2.java, StudentDemo.java

12. Create an application in a JFrame window that uses JTextField to get a message and encode or decode it using the classes described in the previous programming project. Use four buttons to control the kind of cipher used and to specify whether to encode or decode the message. Also, use JTextField to get the number used in the constructor for the ciphers.

	Notes:

In this project, we create a swing application that will encode and decode messages. It is relatively straightforward using the classes from the previous project. To do this, we will want variables of MessageEncoder and MessageDecoder interface types. When the cipher button is pressed, create a new cipher instance of the appropriate type and assign it to the variables.

	References:

Project 8.9

	Solution:

See the code in ShowCoder.java and CoderFrame.java.

13. Enhance the class ButtonDemo (Listing 8.20) so that the GUI behaves in all of the following ways: When the GUI first appears, both buttons are visible, but when one button is clicked, that button disappears and only the other button is visible. Thereafter, only one button is visible at a time; when the button is clicked, it disappears and the other button appears. When a button is clicked, the color changes, as in the version in Listing 8.20, and either a smiley face or a frowning face appears. When the program is first run, no face is visible in the GUI. Subsequent faces should replace the previous face. After ten button clicks, the message Only one more click appears. After one more click, the program ends.

	Notes:

This project is a Swing application. The student modifies the ButtonDemo class from Display 8.20. The first modification is to toggle the background color and face picture: blue with a smiley face for sunny, and gray with a frowning face for cloudy. Add an instance variable to keep track of the current state, and then check that variable in the paint method to draw the background and face accordingly. After the “Cloudy” button is clicked, only the “Sunny” button should be visible, and vice versa. You can call the setVisible method of JButton to make a button appear or disappear. The second modification is that the program ends after 10 button clicks. Add an instance variable for the number of clicks, and increment the count in the actionPerformed method. Also in the actionPerformed method, check to see if the number of clicks has reached the maximum. If so, call System.exit

	References:

Listing 8.20, Listing 8.21, Listing 8.22

	Solution:

See the code in ButtonDemo.java, ShowButtonDemo.java, and WindowDestroyer.java.

14. Create an application in a JFrame GUI that will draw a spiral using line segments. The equations for the points on a spiral are

You should draw 150 points. Start θ at 0 and increase it by 0.1 for each new point. Let k be 15. Set the size of the window to 500 by 500.

	Notes:

This project is a simple Swing application that will draw a spiral. It requires familiarity with polar coordinates. To draw the spiral, override the paint method.

	Solution:

See the code in ShowSpiral.java and Spiral.java.

