Правительство Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования
«Национальный исследовательский университет
«Высшая школа экономики»
Факультет компьютерных наук
Департамент программной инженерии
Утверждаю
Декан факультета
компьютерных наук
И.В. Аржанцев
«___»____________ 2015 г.
Программа дисциплины «Конструирование программного обеспечения»
(“Software Design”)
для направления 09.03.04 «Программная инженерия»
подготовки бакалавра
Авторы программы:
профессор, к.т.н. Е.М. Гринкруг
egrinkrug@hse.ru

Одобрена на заседании Департамента программной инженерии «___»____________ 2015 г.
Руководитель Департамента
С.М. Авдошин
Рекомендована Академическим Советом образовательной программы
«Программная инженерия» «___»____________ 2015 г.
Академический руководитель образовательной программы
В.В. Шилов
Москва, 2015
Настоящая программа не может быть использована другими подразделениями
университета и другими вузами без разрешения кафедры-разработчика программы.
	
	Национальный исследовательский университет «Высшая школа экономики»
Программа дисциплины Программирование для направления 09.03.04 «Программная инженерия» подготовки бакалавра

1. Scope and Regulations
The course "Software Design” (BS curriculum, 2nd year) syllabus lays down minimum requirements for student’s knowledge and skills; it also provides description of both contents and forms of training and assessment in use. The course is offered to students of the Bachelor Program of the National Research University "Higher School of Economics" (HSE). The course is a part of B.Sc. curriculum pool of required courses (2nd year), and it is the two-semesters long course (semester A and B, quartiles 1, 2, 3 and 4). The course is planned having one lecture per week followed by the practical seminar lessons (one per week) and intended Self-Studying (SS) activity for students.

The course is delivered for the bachelor’s students of the National Research University-Higher School of Economics, computer science faculty, in scope of Software Engineering educational program.
The course focuses on systematic design of larger object-oriented programs. We will introduce the appropriate concepts, terminology, and notations to help communicate about programs and about programming. Software design is an activity involving options estimation and motivated (rational) design decisions. The course is about Object-Oriented software development and is based on Java programming language and Java platform. We teach how Java language features and modern Java platform abilities can be used systematically to construct software.
The syllabus is prepared for teachers responsible for the course (or closely related disciplines), teaching assistants, students enrolled on the course as well as experts and statutory bodies carrying out assigned or regular accreditations in accordance with corresponding normative documents.
2. Course objectives
After this course the student should be able to elicit a set of requirements for, design, implement, use and evaluate (empirically) software in wide variety of application areas, and be proficient in software development using modern Java-platform programming.

Students will attend lectures (for motivation, explanation of theory and examples, feedback on previous work, questions and discussion, in preparation for assignments), read study material (to learn different aspects of modern software development), and work on practical assignments that focus on acquiring professional skills in software development.
3. Learning Outcomes

Upon mastering the discipline “Software Design”, the successful students will:

· Know what is required for large application developing; which programming technologies fit which types of applications.

· Be able to elicit requirements for various types of applications; design program structure and build prototypes using modern software development tools and environments.

· Acquire skills/experience both in application developing and modern software development technologies learning.
As the result of successful study a student should:

  Know:

- Main principles and methodology of software development using object-oriented programming approach and its implementation and support in Java-platform;
- Java programming language, its support in Java Virtual Machine (JVM) and in developer environments, along with core Java libraries to an extent that corresponds to the Java Platform Standard Edition;

- Modern Java Integrated Developer Environments (IDE) abilities and usage for software development.
 Be able to :

- develop application software using professional IDE(s) for Java programming;

- debug, test and integrate developed software using modern tools and technologies;

- use Java-libraries for various programming technologies and application areas;

- design and implement software applications based on Java Platform Standard Edition;

- find new technologies and solutions to meet the requirements when developing and implementing software.
 Acquire experience in:

- developing software using Java platform and correspondent instruments;
- existing libraries and technology usage when developing software;

- constructing object-oriented software .
4. The Course within the Program Framework

The course is compulsory and belongs to the basic block of disciplines.

The course is provided for students by Software Engineering Department of the Computer Science Faculty during the 2nd learning year in two semesters (1, 2, 3, 4 quartiles).
Total units – 8, hours in total – 304 (including lectures – 72, practical seminars – 72, and self-study – 160).

Formative assessments: 2 control works and 2 home-works assignments.

Intermediate control: the exam in the 2nd quartile.

Final assessment: the exam at the end of the course (4th quartile).

The course is based on the students’ knowledge of mathematics, basics of information science, algorithm theory, and basic programming skills (acquired at the course “Programming” during the 1st learning year) and computer usage knowledge.
The course serves as the base for upcoming disciplines (in algorithms analysis, database design, distributed computing, calculating geometry, computer graphics, etc.) and serves as the base for annual course works, diplomas and research projects, that students will perform upon the course completion.
The course prerequisite is good English knowledge (since the course is provided entirely in English, including lections, practical seminar lessons, homework assignments, tests and quizzes, etc. with minimal aid and use of the native – Russian - language).

5. Topic-Wise Course Contents

	№№
	Topic name
	 Course hours, total
	 Audience hours
	Self-study

	
	
	
	Lectures
	Seminar lessons
	

	Module (quartile) 1

	 1
	Introduction: Software Design and main Programming Paradigms
	4
	2
	2
	4

	 2
	Introduction to Java. Main programming constructs in Java
	4
	2
	2
	4

	 3
	Objects and classes
	4
	2
	2
	4

	 4
	Classes reuse
	4
	2
	2
	5

	 5
	Interfaces and Abstract Classes
	4
	2
	2
	5

	 6
	Inner and Nested classes
	4
	2
	2
	5

	 7
	Type information. Reflection
	4
	2
	2
	5

	 8
	Error and Exception handling
	4
	2
	2
	4

	Subtotal:
	32
	16
	16
	36

	Module (quartile) 2

	 9
	Generic types
	4
	2
	2
	4

	110
	Containers and Collections
	4
	2
	2
	4

	111
	Parallel execution. Basic notions.
	4
	2
	2
	4

	112
	Multithreading and synchronization
	4
	2
	2
	6

	113
	Enhanced concurrent programming
	4
	2
	2
	6

	114
	Input and Output programming. Basics
	4
	2
	2
	4

	115
	Enhanced I/O programming.
	4
	2
	2
	4

	Subtotal:
	28
	14
	14
	32

	Module (quartile) 3

	116
	GUI programming. Basics
	4
	2
	2
	4

	117
	GUI programming with graphics libraries
	4
	2
	2
	4

	118
	JavaBeans component model
	4
	2
	2
	4

	119
	JavaFX framework
	4
	2
	2
	5

	220
	Network programming. Basics
	4
	2
	2
	4

	221
	Network programming. Sockets
	4
	2
	2
	5

	222
	Network programming. Higher levels
	4
	2
	2
	4

	223
	Remote method invocation
	4
	2
	2
	5

	224
	Database connectivity (JDBC)
	4
	2
	2
	4

	225
	Java and native code programming
	4
	2
	2
	5

	226
	Java and XML programming
	4
	2
	2
	4

	Subtotal:
	44
	22
	22
	48

	Module (quartile) 4

	227
	Scripting, Compiling, Annotations and
Annotation Processing
	4
	2
	2
	4

	228
	Logging, Testing and test-driven development
	4
	2
	2
	4

	229
	Projects building technologies overview
	4
	2
	2
	5

	230
	Software Design Patterns. Overview.
	4
	2
	2
	5

	231
	Java Design Patterns.
	4
	2
	2
	4

	232
	JDK evolution and modern JDK 8 overview
	4
	2
	2
	4

	233
	Functional programming in Java
	4
	2
	2
	5

	234
	Streams framework in Java 8
	4
	2
	2
	5

	235
	New JDK features and core libraries
	4
	2
	2
	4

	236
	Software design and applications areas
	4
	2
	2
	4

	Subtotal:
	40
	20
	20
	44

	Total:
	144
	72
	72
	160

6. Course Assessments
6.1. Assessment types and forms
Formative assessment of the course, which is taken into account in the final grade calculations includes two Control Works to be held at the end of the first and third modules and two homework assignments to be accomplished in the third and the fourth modules.

Intermediate assessment for the first half of the course is to be held at the end of the second module in form the exam that is organized as the test at computer. The final exam at the end of the course in the fourth module is organized as the test at computer as well, as the table below outlines.
Assessment Table: Assessment types and forms in quartiles (modules)
	Assessment type
	Assessment form
	Quartiles (modules)
	Additional information

	
	
	1
	2
	3
	4
	

	Formative (week)
	Control work
	*
	
	*
	
	Quiz at computer

	
	Home

assignment
	
	
	*
	 *
	Sample application programming

	Intermediate
	Exam
	
	 *
	
	
	

	Final
	Exam

	
	
	
	 *
	Test at computer

Tests for the Control Works and Intermediate and final Exams contain questions on theoretical and practical material of the current (being assessed) and the previous modules. The test results are marked with the 10-points based mark that is normalized according the test complexity.

The homework assignment includes some Java application design, coding and testing with the results delivered with the corresponding report in electronic form. Each homework assignment is assessed with the 10-points based mark.

6.2. Grade calculation rules

All assessments are performed on the 10-points basic.

Formative assessment of the first module (M1) is the result of the Control Work (CW1) at the end of the first module:

M1 = CW1.
Formative assessment of the second module (M2) is the result of the Intermediate Exam (IE):

M2 = IE.

Formative assessment in the third module (M3) is calculated as arithmetic average of the marks for the Control Work (CW3) and the Homework Assignment (HA3) in the third module (with the conventional arithmetic rounding method applied):

M3 = 0.5 * CW3 + 0.5 * HA3.

Formative assessment in the fourth module (M4) is calculated as the mark for the Homework Assignment (HA4):

M4 = HA4.

The accumulated mark (AM) is the arithmetic average of the marks M1, M2, M3 and M4:

AM = (M1 + M2 + M3 + M4) / 4.

The Final Grade (FG) of the course after the Final Exam (with mark FE) is calculated as follows:

FG = 0.5 * AM + 0.5 * FE.
When calculating the FG value, the Final Exam mark (FE) takes has “higher priority”:
· rounding is done towards the evaluation of the exam. For instance, is AM = 7 and FE = 6, then FG = 6.
· if FE is lower than 4 (in 10-points basic), then FG is unsatisfactory.
Conversion of the Final Grade (FG) from 10-points based grade to 5-points grade scale is performed in accordance with the following table:
Summary Table: Correspondence of 10-points and 5-points grading system marks
	10-points scale
	5-points scale

	1 – неудовлетворительно

2 – очень плохо

3 – плохо
	неудовлетворительно – 2

	4 – удовлетворительно

5 – весьма удовлетворительно
	удовлетворительно – 3

	6 – хорошо

7 – очень хорошо
	хорошо – 4

	8 – почти отлично

9 – отлично

10 – блестяще
	отлично – 5

7. Detailed Course Content
Topic 1. Introduction to the course: Software Design and main Programming Paradigms. An overview of the programming methodology. The Object-Oriented Programming (OOP) in its’ historical aspect. Class- based vs. Prototype Based OOP. Main features of the Class-based Object-oriented language. The History and the Evolution of Java-programming. Application areas of Java-programming. Instruments and tools for Java-programming (IDE(s), jvm(s), tools). Main Java technologies overview. The Java Development Kit (JDK) evolution and structure – from version 1.0 to 8.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 1, 2.
(in Russian translation: стр. 1-14)
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, chapters 1,2.
(in Russian translation: стр. 13-16)

Additional readings:

H.M.Deitel, P.J.Deitel, Java. How to program, Sixth Edition, Prentice Hall, 2004, chapters 1, 2.

Topic 2. Introduction to Java. Main programming constructs in Java. Objects and Types. Types and Classes. Primitive Types. Arrays. Creating objects. Storing objects. Objects’ lifecycle and deletion. Creating new object types. Lexical basics of the language. Source files and their contents. Rules and conventions for coding and documenting in source files. Comments. Packages and their names. Fields and initialization rules. Literals. Methods, parameters and return values. Operators in Java programming language. Control flow (if-else, loops, switches).
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, chapters 1,2. pp.15-62.
(in Russian translation: стр. 17-70)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 3..
(in Russian translation: стр. 59-126)

Additional readings:

Ken Arnold, James Gosling, David Holmes, The Java Programming Language, Forth Edition, Addison Wesley Professional, 2005, chapter 1.
H.M.Deitel, P.J.Deitel, Java. How to program, Sixth Edition, Prentice Hall, 2004, chapters 3-5.

Topic 3. Objects and Classes. Objects initialization and finalization. Constructors. Mutable and Immutable objects. Methods overloading. Default constructors. This-keyword. Calling constructor from constructor. Super-keyword. Classes as objects. Static-keyword. Object lifecycle detailed. Object finalizing and garbage collection. The order of object initialization and finalization. Static and non-static initializers. Arrays initialization.
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006,Chapter 3-5. pp.107-144.
(in Russian translation: стр. 71-150)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 4.
(in Russian translation: стр. 127 - 192)

Additional readings:
E.W.Dijkstra at al. On-the-fly Garbage Collection: An Exercise in Cooperation, Communications of the ACM, v.21, 1978. 8
Topic 4. Reusing Classes. Composition and inheritance. Inheritance syntax. Base class initializing. Constructors with arguments. Delegation. Combining composition and inheritance. Enforcing object finalization properly. Name hiding. Composition vs. Inheritance comparison. The semantics of the protected-keyword. Polymorphism. Upcasting and downcasting. Binding (early and late). Private methods and fields usage. Constructors and polymorphism.
Main Readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapters 6, 7, 8..
(in Russian translation: стр. 151-220)
Тема 5. Interfaces and abstract classes. Abstract methods and abstract classes. Interfaces and their difference from abstract classes. Interfaces and the multiple inheritance in Java (including new features in Java 8). Adapting with interfaces. Fields in interfaces and their initialization. Inner interfaces. Interfaces and factories. Tagging interfaces. Cloning and its Java implementation. Static and default methods in interfaces (Java 8). Enumerations (enums).
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 9. pp.219-242.
(в переводе: стр. 221-244)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 6
(in Russian translation: стр. 193-265)

Additional readings:
Richard Warburton. Java 8 Lambdas. O’Reilly Media Inc., 2014. Chapter 4.
Topic 6. Nested and inner classes. Link from inner to outer class. This and new keywords usage. Intter classes and upcasting. Naming inner classes. Local and anonymous classes. Factories and inner classes. Static nested classes. Classes in interfaces. Inner classes access rules. Advantages and disadvantages when using inner classes. Inner classes and event-driven calculations. Inheriting from inner classes. New Java 8 features and inner classes.
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 10.
(in Russian translation: стр. 245-276)

Additional readings:
Richard Warburton. Java 8 Lambdas. O’Reilly Media Inc., 2014. Chapter 1, 2, 4.

Тема 7. Runtime Type Information. Objects of class Class. Loading classes. ClassLoader basics and principles. Getting the reference to a class. Class-literals. Static and dynamic type control abilities. Reflection and its methods. Extracting information from class and dynamic methods invocations. Reflection and access control issues.
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 13.
(in Russian translation: стр. 352-394)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 5.
Topic 8. Exceptions handling. Exceptions objects. Объекты-исключения. Creating exceptions. Catching exceptions and exceptions handling. Specifying exceptions. Stack tracing. Rethrowing exceptions. Exception chains. Standard exceptions and their classification. Performing cleanup with finally clause. Exceptions guidelines, limitations and usage.
Основная литература:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 12.

(in Russian translation: стр. 310-351)

Topic 9. Parameterized Types (Generics). History and goals of Java Generics usage. Simple generics. Generic interfaces. Generic methods. Generics and inner classes. Limitations of generics in Java. Generic and non-generic code coexistence. Generics and arrays. Wildcards. Implementing parameterized interfaces. Type conversions and warnings when using generics.

Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 14.
(in Russian translation: стр. 397-452)

Topic 10. Containers and Collections. Parameterized and typed containers. Main notions and interfaces (Lists, Iterators, Sets, Maps). Collections framework and library design principles overview. Foreach and iterators. Hashing and its’ usage. Rules for the hashCode() and equals() methods usage. Arrays, collections and parameterization. Arrays and parameterized types. Utility classes to work with arrays and collections.
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 15, 16.
(in Russian translation: стр. 277-309, 454-482)

Topic 11. Parallel execution. Basic notions. Runnable interface. Threads of control and Thread class. Class Thread methods overview. Thread priority. Waiting primitives. Resource sharing. Basic means for threads synchronization in Java. Atomic operations. Volatile keyword. Critical sections.
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 17.
(in Russian translation: стр. 557-602)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 14.
(in Russian translation: том 2 стр. 23-75)

Topic 12.Multithreading and synchronization. Thread-safety notion. The parallel execution impact on containers implementations (thread-safe containers). Threads interactions and synchronization tasks and solutions. Standard Java concurrency support using methods wait() / notify() of the class Object.
Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 17.
(in Russian translation: стр. 603 - 629)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 14.
(in Russian translation: том 2, стр. 76 - 99)
Topic 13. Enhanced concurrent programming. An overview of the parallel processing support evolution in Java. Concurrency library overciew (java.util.concurrency - package) with samples and demonstrations.

Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 14.
(in Russian translation: том 2, стр. 76 - 99)
Additional readings:
Oracle Tutorials. (www.ortacle.com)
Topic 14. Input and Output programming. Basics. The File.class and its’ usage. The architecture of the input / output support in Java. Data streams (InputStreams and OutputStream) and their implementations. Readers and Writers. Using data streams. Standard input/output streams.

Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 16.
(in Russian translation: стр. 483-509)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 1.
Topic 15. Enhanced I/O programming. The Historical overview of the input/output support evolution in Java. New input/output library (nio). ByteBuffer features and usage. Performance issues. Data compression. JAR-files, Serialization, deserialization and their implementation variants.

Main readings:
Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006, сhapter 16.
(in Russian translation: стр. 510-555)

Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 1.
Topic 16. GUI Programming. Basics. History of GUI programming support evolution in Java. GUI programming packages in JDK (awt, java2D, swing and others). Basic graphics and event processing support.

Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 7, 8.
(in Russian translation: стр. 305-408)

Topic 17. GUI Programming with graphics libraries. Swing library overview. Swing-components and their usage. Depicting lists, tables, trees using swing components. Swing components containers. MVC-design pattern in Swing. Usage samples.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, chapter 7.
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 6.
Topic 18. JavaBeans component model. Component-oriented programming methodology. Component-oriented programming in Java. Bean Development Kit. Events and Event adapters. Introspector. Properties, Property Change Events, XMLEncoder/Decoder. Package java.beans overview.

Main readings:
Java Beans Tutorial : http://docs.oracle.com/javase/tutorial/javabeans/index.html

Additional readings:
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
Topic 19. JavaFX framework. The architecture of the JavaFX framework. Scene and Scene graph in JavaFX. Graphics subsystem in JavaFX. Threading model of JavaFX. The overview of the new abilities for GUI Programming in JavaFX. Java 3D programming and JavaFX support for 3D programming. Visual effects in JavaFX.
Main readings:
Oracle Tutorials. www.oracle.com
JavaFX 2.0 – Introduction by Example.
Pro JavaFX2 – A Definitive Guide to Rich Clients with Java Technology.
Additional readings:
http://www.martinfowler.com/bliki/FluentInterface.html
http://www.interactivemesh.com/
Topic 20. Network programming. Basics. Java and Network programming. Open System Interconnection (OSI) model and levels. Internet Protocols. Connection-oriented and connectionless protocols. TCP and UDP protocols. Ports.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 3.
Topic 21. Network programming. Sockets. Internet Addressing. Distributed calculations and Inter Process Communications. Unicast vs. Multicast vs. Broadcast communications. Socket Application Programming interface. Socket types. Stream-mode sockets. Server and Client programming with sockets. Concurrent server. Problems with sockets programming. Interruptible sockets.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 3.
Topic 22. Network programming. Higher levels. URL and URLConnections. Uniform Resource Locator (URL). URL and URI. Client and Server communications via http. Simple http-server. Overview of the Java network programming technologies

.

Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 3.
Topic 23. Remote method invocation. Working with distributed objects. The roles of client and server. Remote method calls. Programming model for Remote Method Invocation (RMI). RMI Registry. Remote interface implementation. Parameters and return values passing. Sample applications.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 11.
Oracle Tutorials. www.oracle.com

Topic 24. Java DataBase Connectivity (JDBC). The design of JDBC. The SQL basics. JDBC Configuration. Executing SQL Statements. Query execution. Transactions. Stored procedures. Metadata. JDK supplied Derby DBMS.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 4.
Oracle Tutorials. www.oracle.com

Topic 25. Java and native code programming. When and why that may be needed? Calling a C-function from Java program. Passing parameters and return values. Passing strings. Accessing fields. Encodings. Calling Java methods. Accessing array elements. Handling errors. Using invocation API.

Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 12.
Oracle Tutorials. www.oracle.com

Topic 26. Java and XML programming. XML overview: why it is needed? Using XML in Java programming. XML document structure. Parsing XML. DOM-Parsers. DTD and XML Schema. Parsing and validating XML documents. Locating information with XPath. Using namespaces. SAX-Parsers. Push vs. Pull Parsers.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 2.
Oracle Tutorials. www.oracle.com

Additional readings:
Cay S.Horstmann, Big Java, chaper 23.
http://www.javacodegeeks.com/2013/05/parsing-xml-using-dom-sax-and-stax-parser-in-java.html
http://www.xml.com/axml/axml.html

Topic 27. Scripting, Compiling, Annotations and Annotation Processing. Scripting for the Java platform. The Compiler API. Using Annotations. Annotation Syntax. Standard Annotations. Source level annotations processing. Bytecode engineering and corresponding libraries.
Main readings:
Cay S. Horstmann, Gary Cornell. Core Java 2, vol.2 Advanced Features. chapter 10.
J.Bloch.Effective Java. Item 35. Prefer annotations to naming patterns
Additional readings:
http://royjin.wordpress.com/2010/06/30/java-annotation-practical-tutorials/
http://docs.oracle.com/javase/tutorial/java/annotations/index.html
http://www.vogella.com/articles/JavaAnnotations/article.html
http://www.developer.com/java/other/article.php/3556176/An-Introduction-to-Java-Annotations.htm
http://willcode4beer.com/opinion.jsp?set=annotations_gotchas_best_practices
Topic 28. Logging, Testing and test-driven development. What logging is aimed for? Java Logging libraries overview. What is Unit testing? Test coverage. Unit testing in Java. JUnit introduction with samples. JUnit versions, annotations and assertions. Creating JUnit tests. Using JUnit testing in IDE(s). Introduction to Test-driven development (TDD).

 Main readings:
 Konstantina Dimtsa. JUnit tutorial for Unit testing. The ultimate guide. 2014.
http://www.tutorialspoint.com/log4j/

http://logging.apache.org/log4j/1.2/manual.html
Additional readings:
http://habrahabr.ru/post/113145/
http://junit.org/

http://examples.javacodegeeks.com/core-java/junit/junit-getting-started-example/

http://examples.javacodegeeks.com/core-java/junit/junit-using-assertions-and-annotations-example/

http://examples.javacodegeeks.com/core-java/junit/junit-annotations-example/

Topic 29. Projects building technologies overview. Project building technologies (Ant, Maven, Gradle) comparison. Typical builder steps. Using builders with IDE(s) and repositories.
Main readings:
Ant:
http://www.ibm.com/developerworks/ru/edu/j-apant/
http://ant.apache.org/manual/
Maven:

http://www.sonatype.com/books/mvnref-book/reference/public-book.html
Gradle:

Tim Burglund, Matthew McCullough, Building and Testing with Gradle, O’Reilly, 2011.

Hubert Klein Ikkink, Gradle Effective Implementation Guide. 2012.
http://stackoverflow.com/questions/1163173/why-use-gradle-instead-of-ant-or-maven
Additional readings:
http://www.drdobbs.com/jvm/why-build-your-java-projects-with-gradle/240168608
Introduction to Continuous Integration. http://habrahabr.ru/post/82724/
Topic 30. Software Design Patterns. Overview. What is a pattern? Why it is useful? Design principles. Patterns classification: creational, structural, behavioral and others (problem specific: concurrency design patterns, component design patterns, etc.).
Main readings:
E.Gamma et al. Design Patterns. Elements of Reusable Object-Oriented Software. 1997.

Additional readings:

Java DesignPatterns. ibm.com/developerWorks

Topic 31. Java design patterns (Continued). The overview of the creational, structural and behavioral design patterns with samples in Java.
Main readings:
Bruce Eckel, Thinking in Patterns. Problem solving techniques using Java.

Topic 32. JDK evolution and modern JDK 8 overview. Main JDK evolution steps from JDK 1.0 to JDK 8 (awaiting JDK 9). Main goals in JDK8. Object-oriented programming vs. Functional programming. Ecosystem (in hardware architecture) changes the Java system. Multicore processors and java streams processing. Passing a code as parameter. Data parallelism and parallel data processing. Functions, Methods and Lambdas in Java 8.
Main readings:
Richard Warburton. Java 8 Lambdas. O’Reilly, 2014.

Additional readings:

James Gosling et al. The Java Language Specification Java SE 8 Edition.

Oracle Tutorials, www.oracle.com

Topic 33. Functional programming in Java. Adding functional programming features to object-oriented language – goals and implementation. Lambda expressions in Java 8. Syntax for Lambda-expressions. Functional interfaces. Method references. Constructor references. Variables in Lambda expressions. Effectively final variables. The reasons for adding default and static methods into interfaces. Samples.
Main readings:
Venkat Subramaniam. Functional Programming in Java, The Pragmatic Programmers, 2014.

Additional readings:
Oracle Tutorials, www.oracle.com

Topic 34. Streams framework in Java 8. The parallel approach to collections processing. Stream API (package java.util.stream) overview. Streams as a high level collection processing features. External vs. Internal iterations. Earning benefits from parallel multicore while processing collections. Lazy methods. The overview of the Stream API with samples.
Main readings:
Richard Warburton. Java 8 Lambdas. O’Reilly, 2014.

Additional readings:
Oracle Tutorials, www.oracle.com

http://

 HYPERLINK "http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764?pgno=1" www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764?pgno=1
http://www.drdobbs.com/jvm/lambdas-and-streams-in-java-8-libraries/240166818
http://www.drdobbs.com/jvm/java-se-8-beyond-lambdas-the-big-picture/240166881

Topic 35. New JDK features and core libraries. When and how new features in Java 8 should be used? Dealing with primitive types with new Java 8 features. New useful classes in JDK 8 libraries. Ordering of the streams elements. Streams and Collections frameworks. Using Collectors (java.util.stream.Collectors). Composing collectors. Stream framework ideology and SIMD architecture goals.

Main readings:
Richard Warburton. Java 8 Lambdas. O’Reilly, 2014.
http://www.coreservlets.com/java-8-tutorial

 HYPERLINK "http://www.coreservlets.com/java-8-tutorial/" /
http://www.drdobbs.com/jvm/java-se-8-beyond-lambdas-the-big-picture/240166881

Topic 36. Software design and applications areas. Conclusion. Data parallelism vs, Concurrency. Performance issues. What’s next in Java evolution? Summary of the course.

8. Educational Methods and Technologies
The course is organized in form of lectures and practical studies (seminar lessons). Each practical lesson contains a short quiz with questions and answers on the topic os the preceding lecture(s), where students try to solve tricky cases in order, one by one, helping to each other when needed. The tasks and questions of the quiz are similar to those that will be used at the Control Works and Exams.
After the quiz, some practical samples are considered and discussed, using some concrete Java code. In fact, that lesson is a form of master class on the corresponding topic of the course.

9. Assessment tools for students current evaluation and attestation

9.1. Topics for control works

The formative assessment is performed using materials available to prepare for certification according the Sun/Oracle Certified Java Associate and Programmer certification programs. Tests at the computer are organized using the tests question and answers that were used at the certification exams previously for that certification program and/or similar ones.

The set of tests corresponds to the material and topics that are to be tested. The number of tests and their content unsure the successful pass through the test in case of having the acceptable knowledge only.

9.2. Topics for homework assignments

The homework assignments are proposed by the teacher in order to use the correspondent course materials for their fulfillment and require the use of object-oriented programming skills and modern software development tools and technologies, including the tools to design, code, debug, test, build and document the software applications being assigned.

9.3. Sample questions for course final quality assessment
1. What is the difference between class-based and prototype-based programming languages (provide a sample)?
2. What are the software tools to develop and execute a Java-program?

3. What is the difference between Java Runtime Environment (JRE) and Java Developer Kit (JDK)?

4. How the execution of a Java-application is started?

5. List the main differences between Java versions starting from Java 1.0
6. What is Java-applet and what is the difference between Java-applet and Java-application?

7. What kinds of data types are defined and used in Java language?

8. List all primitive types of Java language.

9. What is the reference type and what kinds of reference types are found in Java language?

10. What is a wrapper? Provide some samples of its usage.

11. How classes are loaded?

12. What is the aim of the package notion?.

13. What is a tagging interface? Provide some samples.

14. Are there some Java-interface(s) that any Java array does implement? How to write a few lines of code to get an answer on that question?

15. What is the difference between an abstract class and an interface?

16. What is a singleton?

17. Can we clone any object since there is a clone() method in the base class java.lang.Object?

18. What is the difference between composition and inheritance?

19. Can we instantiate non-public class having a public constructor?

20. What is an instance initializer? What is a static initializer? What is executed first: a constructor or an instance initializer?

21. When the finalize() method can be called? What it is aimed for?

22. Can we change a value of a field that is declared in an interface?
23. List all kinds of inner classes in Java language.

24. What is the default-constructor? Can a static inner class have that constructor? What about non-static inner class? How many parameters that constructor may have?
25. How many constructors an anonymous class can have?

26. What is the checked exception? Which kinds of exceptions can be listed?

27. What is the finally-block of code? When it is executed?

28. What is the immutable object?

29. How can we know – was the given class inherited from its superclass or not? How to get an answer: what are the interfaces that the class of a given object does implement?
30. Is there a common superclass of all enum(s) in Java? What was the version of JDK they were defined first?

31. What is the package that contains collections? What are the main interfaces and classes to deal with collections?
32. What are the differences between LinkedList, ArrayList and Vector?

33. What is the difference between a HashMap and Hashtable?

34. What is hashing? What can be happened in case we overwrite the hashCode() method of some class so that is will always return the value 7?

35. Define the parameterized type (class) Variable <T> (“a variable with a value of type T”) having its setter- and getter- methods (i.e. T setValue(T newvalue) and T getValue() methods). What will be the type of the property “value” in the PropertyDescriptor from a BeanInfo object for that class returned by java.beans.Introspector?

36. Propose as many ways to get a copy of an array as you can.

37. What is thread? How to start it and how to stop it?

38. What does the thread-safe notion mean?

39. What a thread-safe singleton implementation.

40. What is the difference between a synchronized-method and a synchronized-block?

41. What does the serialization mean? What is the deserialization?

42. How a Reader can be used? What for?

43. How Swing differs from AWT?

44. What is a Java bean? What are the minimal requirements for a class to be a Java bean?

45. What the aim of the class java.beans.Introspector?

46. What methods should be implemented in a Java bean class to define that its objects (instances) can raise events of the given type?

47. If a property is bound – what does it mean?

48. What instruments to deal with XML files do you know? What are they aimed for?

49. What kinds of data protection mechanisms the Java VM supports?
50. What is the SecurityManager in Java?
(etc.)

10. Learning resources
All the reading resources (and many other learning resources including software programs) are made available for students on a model server that is used in the course.

10.1. Base Tutorial

There is no the only one tutorial covering the whole course material.

10.2. Main readings

· Bruce Eckel. Thinking in Java. Fourth Edition. Prentice Hall, 2006.

The Russian translation available: Эккель Б. Философия Java. Библиотека программиста.
4-е изд.- СПб.: Питер, 2009.- 640 с.: ил.- Серия «Библиотека
программиста».

· Cay S. Horstmann, Gary Cornell. Core Java 2, vol.1 Fundamentals, vol.2 Advanced Features. 9th Edition, 2012.

The Russian translation available corresponds to the 7th Edition: Хорстманн, Кей С., Корнелл
Гари. Java 2. Библиотека
профессионала. Том 1. Основы. 7-е изд.: Пер. с англ.- М.:
Издательский дом
«Вильямс», 2007,- 896 с. Хорстманн, Кей С., Корнелл Гари. Java 2.
Библиотека
профессионала. Том 2. Тонкости программирования. 7-е изд.: Пер. с агл.-
М.: Издательский дом «Вильямс», 2007,- 1168 с.
· Java Developers Kit Documentation. Available at http://www.oracle.com/technetwork/java/javase/documentation/index.html

· Oracle (Sun) Tutorials:

http://docs.oracle.com/javase/tutorial/index.html

http://java.sun.com/docs/books/tutorial/index.html

· Joshua Bloch. Effective Java. Second Edition. 2008.

· J.Gosling, et al, The Java Language Specification, (http://docs.oracle.com/javase/specs/ or http://java.sun.com/docs/books/jls/).

10.3 Additional readings
· Cay Horstmann, Java Concepts, Fifth Edition, John Wiley & Sons, Inc.

· H.M.Deitel, P.J.Deitel, Java. How to program, Sixth Edition, Prentice Hall, 2004.

· R.Morelli, R.Walde, Java, Java, Java – Object-oriented problem solving, Third Edition, Prentice Hall, 2005.
· D.Poo, D.Kiong, S.Ashok. Object-Oriented Programming and Java, Second edition, Springer, 2008.

· Bruce Eckel, Thinking in Patterns. Problem solving techniques using Java.

· Herb Shildts. Java Programming Cookbook. 2008.

· Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

· Professional Java, JDK 6 Edition, 2007.

· Учебная литература IBM: http://www.ibm.com/developerworks/ru/java/newto/

· Robert Englander. Developing Java Beans, O’Reilly, 2001.

· Khalid. A.Mughal, Rolf W. Rasmussen. A Programmers Guide to Java SCJP Certification. A Comprehensive primer. Third Edition. Addison-Wesley, 2009.

· Joshua Bloch, Neal Gafter. Java Puzzler: Traps, Pitfalls, and Corner Cases. Addison Wesley Professional, 2005.
· Richard Warburton. Java 8 Lambdas. O’Reilly Media Inc., 2014.
· Venkat Subramaniam. Functional Programming in Java, The Pragmatic Programmers, 2014.

10.5. Software resources
The following software is used along the course study:
· Java Developer Kit (JDK) for Java Platform Standard Edition

http://www.oracle.com/us/technologies/java/standard-edition/overview/index.html
· IntelliJ IDEA IDE (http://www.jetbrains.com/idea/) - the main software development instrument; all students are granted with free classroom license for all the learning year. That IDE is installed in all computer classes used at the seminar lessons.
As additional instruments the following free IDE can be used as well:

· NetBeans IDE (http://netbeans.org/index.html),

· Eclipse IDE (http://www.eclipse.org/downloads/).

10.6. Remote support
The course is supported with moodle server where all students are enrolled at the beginning of the course. There are specific pages and repositories supporting all activities during the course, incl lectures presentations, home assignments, tests, quizzes, tests and exams results, etc. All reading and other learning materials are made available for students and distributed using this moodle server.

11. Technical resources
The following technical resources are used for the course: projectors for lectures presentations and practical lessons, classrooms with desktop computers where JDK 8 and IntellyJ IDEA IDE are installed.
The author of the program:

/E. M. Grinkrug/
