Intermediate Java II

MISM/MSIT 95-713

Optional Homework

Due: Sunday, October 23, 7:00pm

This homework is optional. If you do it and get a score higher than any of your previous homework scores, we will replace the lowest of them with this one.

There are two exercises in this homework. The first exercise is 20 points. The second exercise is 100 points. There is additionally a write-up part, which is 30 points. Although the total makes 150 points, you can obtain credit only up to 100 points out of this homework.

Although this homework is optional, I recommend each of you doing it. It will help you develop new programming skills and acquire experience with new Java APIs. What you will do would include the following:

· Modifying existing programs in response to additional requirements while retaining the interfaces as much as possible.

· Making design decisions based on loosely defined requirements. Working with instructor and TA to evolve your design.

· Evaluating your decisions and providing supporting arguments for them.

· Searching the Internet for APIs to implement your design decisions.

· Experimenting with new Java skills like thread, GUI and JDBC programming.

· Packing applications and applets in jar files. Deploying jar files over Internet.

In this homework, you will be modifying and extending the homework4. You can have separate eclipse projects for each exercise so that, this way, you can easily create zip and jar files separately. As before, you may assume that all the information provided by the user and by the data files would be valid. Here are the exercises for this homework:

1. Modify homework 4 exercise 1 the following way:

· BankServer class:

· Implement thread safety for its methods via the synchronized keyword.

· Introduce an inner class which extends Thread whose run method should invoke the applyMonthlyInterest() on all the savings account every 30 seconds. Introduce a shutdown() method to the BankServer class that will stop the thread.

· Atm class:

· Introduce a new transaction type QUIT. This transaction should send a shutdown() message to the bank server and wait for 40 seconds for the bank server to shutdown. After that, halt the program.

· Rather than implementing a single transaction in the console UI, allow many until the user selects the QUIT transaction.

2. Modify and extend the homework 4 exercise 3 the following way:

· Modify it so that it runs both as an application and as an applet. Follow the (complete) conversion described in your textbook. Implement it so that when running as an applet:

· The input file is read from a URL rather than from a local file.

· Clicking on the Save menu item should display a message dialog saying that Applet cannot save to a local file.

· Have an Exit menu item in the File menu only if the program is running as an application.

· In the “Services Ordered” tabbed pane, add two buttons “Add Service” and “Delete Service”. These buttons are activated only after a customer is selected in the tree. “Add Service” button runs a wizard to facilitate taking input for billable and service information so that a new service can be added to the selected customer. “Delete Service” button removes the selected billable-service row in the table from the customer. You should ask a confirmation to the user before deleting a service.

· In the “Customer Information” tabbed pane, when the user clicks on the Modify button, introduce a 5 second delay to simulate the database access delay. Implement thread support so that the Modify button remains disabled but GUI can still reply to user events during the delay for modifying the customer information. After the modification is complete, Modify button gets re-enabled.

· Think about which of the methods of the model classes should be made synchronized for thread safety in case multiple views access them. Make the ones that need to be.

· We have used a sequential text file for getting the input in our exercises so far. Design a relational database for the Service Provider application and implement it using JDBC
.

· Package all executables of this exercise into a jar file, which would self-execute this application. Put that jar file in a web server (e.g. Andrew) with an html file to run your program as an applet.

Overall, implement exception handling especially for all IO and thread exceptions. In non-GUI code, print out the stack trace on the console if you catch an exception. In GUI code, additionally display a message via a modal message dialog. You may assume the input files are all well-formed and the user always makes the valid actions.

In the write-up part, you should briefly explain the following in a text file:

· Which interfaces did you want to keep the same in both exercises? Why? If you change the class name or public APIs, document them.

· Which methods of the model classes in exercise 2 you synchronized for thread safety? Why?

· Did you use a worker thread or not in exercise 2? Why or why not?

· Explain your design for your wizard GUI. Do you think you achieved good level of polymorphism and code reuse.

· Document your relational database design in exercise 2.

In your write-up, mention where you located your applet and your html file (e.g. in which directory in the Andrew server).

Create separate zip files for exercises 1 and 2. Note that your zip files should contain the documentation files as well. Additionally, create the jar file for the second exercise. Put all the zip files, the jar file for the second exercise and your write-up document into a single mega zip file and submit it before the due time via the Drop Box. You don’t need to print your files as only electronic submission is requested in this homework.

The executable files will be available in Homework5 directory of http://www.andrew.cmu.edu/user/syucel/95713/homework_solutions/ . No skeleton code will be provided for this homework.

� The maximum point you may get with JDBC database implementation and documentation is 25 points in this homework, 20 for implementation and 5 for documentation. Likewise, if you don’t consider doing the JDBC part, the rest of the homework constitutes 125 points.

