1
Chapter 7

Chapter 7 Review Exercise Solutions

R7.1

An index is an integer value which represents a position in an array or array list.

The bounds are the lowest and highest legal index value; that is, 0 and one less than the length of the array/size of the array list.

A bounds error occurs when an array or array list is accessed at an index that is outside the bounds.

R7.2

public class ExR7_2

{

 public static void main(String[] args)

 {

 String[] greeting = new String[2];

 greeting[0] = "Hello,";

 greeting[1] = "cruel";

 greeting[2] = "World!";

 }

}

When you run this program, you get an array index out of bounds exception.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2

at ExR7_2.main(ExR7_2.java:8)

The line number (8 in the example) helps you locate the error.

R7.3

import java.util.ArrayList;

public class ExR7_3

{

 public static void main(String[] args)

 {

 ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();

 accounts.add(new BankAccount(1,1500));

 accounts.add(new BankAccount(2,2500));

 accounts.add(new BankAccount(3,1000));

 accounts.add(new BankAccount(4, 500));

 BankAccount max = accounts.get(0);

 BankAccount min = accounts.get(0);

 for (BankAccount a : accounts)

 {

 if (a.getBalance() > max.getBalance())

 max = a;

 if (a.getBalance() < min.getBalance())

 min = a;

 }

 System.out.println(max.getAccountNumber() + " "

 + max.getBalance());

 System.out.println(min.getAccountNumber() + " "

 + min.getBalance());

 }

}

R7.4

import java.util.Scanner;

import java.util.ArrayList;

/**

 Reads 10 strings and inserts them into an array list. Then,

 prints out the strings in the opposite order from which they

 were entered.

 */

public class ExR7_4

{

 public static void main(String[] args)

 {

 Scanner in = new Scanner(System.in);

 ArrayList<String> strings = new ArrayList<String>();

 System.out.println(

 "Enter ten strings, each ended by a newline.");

 for (int i = 0; i < 10; i++)

 strings.add(in.nextLine());

 for (int i = strings.size() - 1; i >= 0; i--)

 System.out.println(strings.get(i));

 }

}

R7.5

for (BankAccount a : accounts)

{

 if (largestYet == null)

 largestYet = a;

 else

 if (a.getBalance() > largestYet.getBalance())

 largestYet = a;

}

return largestYet;

This approach is less efficient because we perform a check at every iteration (largestYet==null), even though we know that check is only going to be true on the first iteration of the loop.

R7.6

The maximum value in the list could be smaller than 0 (i.e. negative). Then, the program would incorrectly set max to 0. We can fix the error by applying the same approach as in the function that finds the largest value in a list (as detailed in the book). Using this approach, we set max to be the first element of the list, and then iterate through the remaining elements, updating max if needed.

R7.7

a. 1 2 3 4 5 6 7 8 9 10

for (int i = 0; i < 10 ; i++)

 a[i] = i + 1;

b. 0 2 4 6 8 10 12 14 16 18 20

for (int i = 0; i <= 10 ; i++)

 a[i] = 2 * i;

c. 1 4 9 16 25 36 49 64 81 100

for (int i = 0; i < 10 ; i++)

 a[i] = (i + 1) * (i + 1);

d. 0 0 0 0 0 0 0 0 0 0

int[] a = new int[10];

e. 1 4 9 16 9 7 4 9 11

int[] a = { 1, 4, 9, 16, 9, 7, 4, 9, 11 };

R7.8

The following code segment fills an array with ten random numbers, with possible repetitions.

int[] a = new int[10];

Random generator = new Random();

for (int i = 0; i < a.length; i++)

 a[i] = 1 + generator.nextInt(100);
The following code segment fills an array with ten different random numbers.

int[] a = new int[10];

Random generator = new Random();

int i = 0;

while (i < a.length)

{

 boolean found = false;

 int r = 1 + generator.nextInt(100);

 int j = 0;

 // Check if generated number "r" already exists in "a"

 while (!found && j < i)

 {

 if (a[j] == r)

 found = true;

 else

 j++;

 }

 // If "r" is a new number, store it in "a"

 if (!found)

 {

 a[i] = r;

 i++;

 }

}

Here is another approach that avoids repeated guesses:

int[] a = new int[10];

Random generator = new Random();

int[] values = new int[100];

for (int i = 0; i < 100; i++)

 values[i] = i + 1;

for (int i = 0; i < 10; i++)

{

 int r = generator.nextInt(100 - i);

 a[i] = values[r];

 values[r] = values[100 - i - 1];

}

R7.9

There is a bounds error. The index of the for loop begins at 1 -- skipping the first element of the array -- and ends with 10 -- which is one past the end and a fatal error.

One remedy is to adjust the bounds for i:
for (int i = 0; i < 10; i++) data[i] = (i + 1) * (i + 1);

Another remedy is to adjust the array index:

for (int i = 1; i <= 10; i++) data[i - 1] = i * i;

R7.10

public class ArrayDebugDemo

{

 public static void main(String[] args)

 {

 int[] data = new int[20];

 for (int i = 0; i < 10; i++)

 data[i] = (i + 1) * (i + 1);

 }

}

The elements of the array beyond those that were filled are all zero. When i is 2, the array has been filled with ten numbers, and its content is 1, 4, 9, 0, 0, 0, ..., 0.

R7.11

/* a. */

for (int i = 0; i < data.length; i++)

 sum = sum + data[i];

/* b. */

for (int i = 0; i < data.length; i++)

 if (data[i] == target)

 return true;

/* c. */

for (int i = 0; i < data.length; i++)

 data[i] = 2 * data[i];

R7.12

/* a. */

for (double x : data)

 sum = sum + x;

/* b. */

boolean isFirst = true;

for (double x : data)

{

 if (isFirst)

 isFirst = false;

 else

 sum = sum + x;

}

/* c. */

int i = 0;

for (double x : data)

{

 if (x == target)

 return i;

 i++;

}

R7.13

a. A useful method that has an array of integers as a parameter that is not modified:
A method that computes the maximum value of the numbers stored in an array

b. A useful method that has an array of integers as a parameter that is modified:
A method that sorts the numbers in an array

c. A useful method that has an array of integers as a return value:
A method that returns a sorted copy of an input array, without modifying the parameter array

R7.14

· Change each bank account by adding interest to it. This method keeps the order of the accounts unchanged but modifies individual elements.

· Sort the bank accounts by increasing balance. This method rearranges the order of the accounts but keeps each element unchanged.

R7.15

Parallel arrays are two or more arrays of equivalent length in which corresponding elements are logically related.

Parallel arrays are indications of poor programming because items that are conceptually related are not represented together. This makes it more difficult to change the data representation.

To avoid parallel arrays, find a concept that describes the related elements and make it into a class having instance variables corresponding to the separate array elements. Then, make a single array of the new class type.

R7.16

a. Test that two arrays contain the same elements in the same order

If the two arrays have the same size, in a while loop, test that each successive pair of elements is equivalent. Return false at the first nonequivalence, otherwise return true, meaning they are equal.

if (a1.length == a2.length)

{

 int i = 0;

 while (i < a1.length)

 {

 if (a1[i] == a2[i])

 // or a1[i].equals(a2[i])) if the arrays contain objects

 i++;

 else

 return false; // they aren't equal

 }

 return true;

}

else

 return false; // they aren't equal

b. Copy one array to another

Make a new array of same size and type as the first, then in a for loop bounded by the array size, assign each successive member of the original array to the new one. Or, use System.arraycopy.

c. Fill an array with zeroes, overwriting all elements in it.

In a for loop bounded by the size of the array, assign 0 to each element in the array.

d. Remove all elements from an array list

Use a for loop to go through all the elements in the array list in reverse order, removing each one it visits by using remove(i).

R7.17

	All elements of an array are of the same type
	true, but that type can be Object, "the lowest common denominator" of all Java classes

	Array subscripts must be integers
	true

	Arrays cannot contain string references as elements
	false, for example main(String[] args)

	Arrays cannot use strings as subscripts
	true

	Parallel arrays must have equal length.
	true (in order to be parallel)

	Two-dimensional arrays always have the same number of rows as columns
	false (square matrices, however do)

	Two parallel arrays can be replaced by a two-dimensional array
	false (the array elements might be of different type)

	Elements of different columns in a two-dimensional array can have different types
	false

	Elements in an array list can have different types
	true

R7.18

	A method cannot return a two-dimensional array
	false

	A method can change the length of an array parameter
	false

	A method can change the length of an array list that is passed as a parameter
	true

	An array list can hold values of any type
	false; you cannot use primitive types as type parameters

R7.19

· Regression testing: Regression testing involves repeating previously run tests to ensure that known failures of prior versions do not appear in new versions of the software.

· Test suite: A test suite is a set of tests for repeated testing..

R7.20

Cycling is a problem that occurs when a bug that is fixed appears again in a future version. To avoid cycling, it is always best to think through what really causes a bug and fix the root cause instead of doing a sequence of "Band-Aid" solutions. Also, you should perform regression testing to ensure that known failures of prior versions do not appear in new versions of the software.

