CSCE155

Fall 2004
CSCE155

Fall 2004

Lab 8 – SEQ CHAPTER \h \r 1 Exceptions
Student Handout

1. Lab Objectives TC \l1 "
Following the lab you should be able to:

· Define what an exception is and why exceptions occur.
· Explain the advantages of using Java exception handling over traditional error management techniques.
· Distinguish between checked and unchecked exceptions.
· Write a simple exception-handling routine to handle a single exception using try–catch and try–finally blocks.
· Write methods that use the throws statement for exception handling.
 TC \l1 "
2. Prior to the laboratory TC \l1 "
·
Review the laboratory handout.
·
Read Wu, Chapter 8.
· Read Chapters 80-81, http://chortle.ccsu.ctstateu.edu/cs151/cs151java.html
·
Read the tutorial, “Handling Errors with Exceptions,”
http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html
	Topics Covered in Lab

	Basics of compile time and runtime errors

	What is an exception?

	Why must exceptions be handled?

	Advantages of Java exception handling

	Exception Types:

· Checked versus Unchecked
· Arithmetic exceptions, IO exceptions, pointer exceptions, and indexing exceptions

	Exception handling

· The try block
· The catch block(s)
· The finally block

	Throwing exceptions

· The throws statement

	Handling multiple exceptions

3. Topics TC \l1 "
4. Activities/Exercises
 TC \l1 "
1.
Exception handling using the throws clause and a try-catch block.

2.
Propagating exceptions.

3.
Working with the finally clause.

4.
Modifying a program with multiple catch blocks.

Activity 1: Exception handling using the throws clause and a try-catch block

· Download TestExceptions.java from the course website.
· Compile TestExceptions.java.
· Notice the error message in the bottom JGrasp panel; you will see the unreported exceptions and which line of code is responsible for this exception.
· Complete Question 1 on your worksheet for Activity 1.
· Modify the main() method declaration in TestExceptions.java to propagate the IOException using a throws clause.
· Compile the modified version of TestExceptions.java.
· Why does the program now compile when you only handled one of the exceptions listed?
· Hint: Look at FileNotFoundException in the Java API.
· Complete Question 2a on your worksheet for Activity 1.
· Execute the program and notice the message in the output window. Because there is no file: Sample.jpg, your main() method throws the exception.
· Modify TestExceptions.java to handle the IOException using a try-catch block instead of propagating the exception. When the exception occurs, print the following string:

“The file you have requested cannot be found.”

· After you have made your changes, compile and execute TestExceptions.java. You should see your error message in the bottom JGrasp panel instead of the thrown exception.
· Complete Question 2b on your worksheet for Activity 1.
· Complete Question 3 on your worksheet for Activity 1.
Activity 2: Propagating exceptions
·
Download CallStack.java from the course website.
·
Study the CallStack.java code to determine what it does.
·
Compile and execute CallStack.java.
·
Complete Question 1 (a and b) on your worksheet for Activity 2.
·
Modify the main() method to handle the exception propagated up the call chain to it. Use a try-catch block to display a meaningful error message when the exception occurs.
· Compile and run the program.
·
Complete Question 2 on your worksheet for Activity 2.
·
Notice that although the exception was thrown in func2, it is caught by the catch block in the main method.
Activity 3: Working with the finally clause TC \l2 "
·
Download TestFinally.java and the text file ‘trycatch.txt’ from the class website into your lab 8 directory.
·
Study the TestFinally.java code to determine what it is supposed to do.

·
Compile TestFinally.java.
·
Complete Question 1 on your worksheet for Activity 3.
·
Modify TestFinally.java to handle the exception by adding a try-catch block to the main() method. Follow the instructions (numbered 1 – 5) in the comments of the file.
·
The first line of the catch block should look like this: catch(IOException ex) {.
·
Display a meaningful error message to indicate the error has occurred. Also include the following Java statement in your catch clause (this assumes you use ‘ex’ as your variable name in the catch clause): System.out.println(“The exception is: “ + ex);
·
You should have two System.out statements in your catch clause.
·
Adding the finally clause: Even when an error occurs in a method, there may be clean-up activities that are required before the method or program terminates. The finally clause will execute if the all the statements in the try block execute (and nothing in a catch block) or if an exception is thrown and the statements in one of the catch blocks are executed.
· In this case, any open files should be closed prior to leaving the method and program termination.
· Modify TestFinally.java to include a finally block. The code in the finally block should close the file that was successfully opened and print a message indicating the file is now closed. HINT: You will need to also add a try-catch block inside the finally block to handle any IOExceptions associated with the file close operation.
·
Compile and execute your modified version of TestFinally.java to test that it works.
· You should now see that your code has generated another type of exception.
·
Complete Question 2a and 2b on your worksheet for Activity 3.
· Add a second catch clause inside the finally block with a meaningful message to handle this new exception.
· Compile and execute your modified version of TestFinally.java to test that it works.
Activity 4: Modifying a program with multiple catch blocks
· Download MultiCatch.java from the class website.

· Study the MultiCatch.java code to determine what it does.

· Compile the program MultiCatch.java.

· Execute MultiCatch with no arguments:

java MultiCatch

· Complete Question 1 on your worksheet for Activity 4.

· Running a program with arguments in JGrasp: From the Run menu in your CSD window, click on the box in front of Run Arguments. This will open a TextField labeled: Run Arguments right above your code in the CSD window. This is where you will enter the arguments: abc xyz in the following instruction.
· Execute MultiCatch with two arguments:

java MultiCatch abc xyz

· Complete Questions 2 and 3 on your worksheet for Activity 4.

5. Supplemental Resources TC \l1 "
1. Exception Handling in Java, http://www.churchillobjects.com/c/11012.html
2. Exceptions in Java, http://www.javaworld.com/javaworld/jw-07-1998/jw-07-exceptions.html
6. Think About

· What types of errors or exceptions might be generated when dealing with files?

· Can you guarantee that the program you have written handles all possible exceptions?

· Why do we have two types of exceptions: checked and unchecked?

· When should you use a finally block?

· If you do not catch and handle exceptions, what will happen if the program throws an exception?

Date: 10/13/2004

Date: 10/13/2004

