Exercises:

1. Write a program in a class NumberAboveAverage that counts the number of days that the temperature is above average. Read ten temperatures from the keyboard and place them in an array. Compute the average temperature and then count and display the number of days on which the temperature was above average.

	Solution:

See the code in NumberAboveAverage.java.

2. Write a program in a class CountFamiles that counts the number of families whose income is below a certain value. Read an integer k from the keyboard and then create an array of double values of size k. Read k values representing family income from the keyboard and place them into the array. Find the maximum income among these values. Then count the families that make less than 10 percent of this maximum income. Display this count and the incomes of these families.

	Solution:

See the code in CountFamilies.java.

3. Write a program in a class CountPoor that counts the number of families that are considered poor. Write and use a class Family that has the attributes

• income—a double value that is the income for the family

• size—the number of people in the family and the following methods:

• Family(income, size)—a constructor that sets the attributes

• isPoor(housingCost, foodCost)—a method that returns true if housingCost + foodCost * size is greater than half the family income (foodCost is the average food cost for an individual, while housingCost is for the family)

• toString—a method that returns a string containing the information about

the family The program should read an integer k from the keyboard and then create an array of size k whose base type is Family. It should then create k objects of type Family and put them in the array, reading the income and size for each family from the keyboard. After reading an average housing cost and average food cost from the keyboard, it should display the families that are poor.

	Solution:

See the code in Family.java and CountPoor.java.

4. Write a program in a class FlowerCounter that computes the cost of flowers sold at a flower stand. Five kinds of flowers—petunia, pansy, rose, violet, and carnation— are stocked and cost, respectively, 50¢, 75¢, $1.50, 50¢, and 80¢ per flower. Create an array of strings that holds the names of these flowers. Create another array that holds the cost of each corresponding flower. Your program should read the name of a flower and the quantity desired by a customer. Locate the flower in the name array and use that index to find the cost per stem in the cost array. Compute and print the total cost of the sale.

	Solution:

See the code in FlowerCounter.java.

5. Write a program in a class CharacterFrequency that counts the number of times a digit appears in a telephone number. Your program should create an array of size 10 that will hold the count for each digit from 0 to 9. Read a telephone number from the keyboard as a string. Examine each character in the phone number and increment the appropriate count in the array. Display the contents of the array.

	Solution:

See the code in CharacterFrequency.java.

6. Create a class Ledger that will record the sales for a store. It will have the attributes

• sale—an array of double values that are the amounts of all sales

• salesMade—the number of sales so far

• maxSales—the maximum number of sales that can be recorded

and the following methods:

• Ledger(max)—a constructor that sets the maximum number of sales to max

• addSale(d)—adds a sale whose value is d

• getNumberOfSales—returns the number of sales made

• getTotalSales—returns the total value of the sales

	Solution:

See the code in Ledger.java.

7. Define the following methods for the class Ledger, as described in the previous exercise:

• getAverageSale()—returns the average value of all the sales

• getCountAbove(v)—returns the number of sales that exceeded v in value

	Solution:

See the code in Ledger.java.

8. Write a static method isStrictlyIncreasing(double[] in) that returns

true if each value in the given array is greater than the value before it, or false otherwise.

	Solution:

public static boolean isStrictlyIncreasing(double[] in) {

 boolean result = true;

 for(int i=0; i< (in.length - 1); i++){

 if(in[i+1] <= in[i])

 result = false;

 }

 return result;

}

9. Write a static method removeDuplicates(Character[] in) that returns a

new array of the characters in the given array, but without any duplicate characters. Always keep the first copy of the character and remove subsequent ones. For example, if in contains b, d, a, b, f, a, g, a, a, and f, the method will return an array containing b, d a, f, and g. Hint: One way to solve this problem is to create a boolean array of the same size as the given array in and use it to keep track of which characters to keep. The values in the new boolean array will determine the size of the array to return.

	Solution:

See the code in Fragments.java.

10. Write a static method remove(int v, int[] in) that will return a new array of the integers in the given array, but with the value v removed. For example, if v is 3 and in contains 0, 1, 3, 2, 3, 0, 3, and 1, the method will return an array containing 0, 1, 2, 0, and 1.

	Solution:

See the code in Fragments.java.

11. Suppose that we are selling boxes of candy for a fund-raiser. We have five kinds of candy to sell: Mints, Chocolates with Nuts, Chewy Chocolates, Dark Chocolate Creams, and Sugar Free Suckers. We will record a customer’s order as an array of five integers, representing the number of boxes of each kind of candy. Write a static method combineOrder that takes two orders as its arguments and returns an array that represents the combined orders. For example, if order1 contains 0, 0,

3, 4, and 7, and order2 contains 0, 4, 0, 1, and 2, the method should return an array containing 0, 4, 3, 5, and 9.

	Solution:

public static int[] combineOrder(int[] order1, int[] order2){

 // Find the number of values that will be in the result

 int[] combinedOrder = new int[5];

 for(int i=0; i<5; i++){

 combinedOrder[i] = order1[i] + order2[i];

 }

 return combinedOrder;

 }

12. Create a class Polynomial that is used to evaluate a polynomial function of x:
[image: image1.wmf]

P

x

(

)

=

a

0

+

a

1

x

+

a

2

x

2

+

L

+

a

n

-

1

x

n

-

1

+

a

n

x

n

 The coefficients ai are floating-point numbers, the exponents of x are integers, and the largest exponent n—called the degree of the polynomial—is greater than or equal to zero. The class has the attributes

• degree—the value of the largest exponent n

• coefficients—an array of the coefficients ai

and the following methods:

• Polynomial(max)—a constructor that creates a polynomial of degree max

whose coefficients are all zero

• setConstant(i, value)—sets the coefficient ai to value

• evaluate(x)—returns the value of the polynomial for the given value x

For example, the polynomial

P(x) = 3 + 5 x + 2 x3 is of degree 3 and has coefficients a0 = 3, a1 = 5, a2 = 0, and a3 = 2. The invocation

evaluate(7) computes
[image: image2.wmf]

3

+

5

´

7

+

0

´

7

2

+

2

´

7

3

=

3

+

35

+

0

+

686

=

724

 and

returns the result 724.

	Solution:

See the code in Polynomial.java.

15. Write a static method for selection sort that will sort an array of characters.

	Solution:

See the code in Fragments.java.

20. Write a static method findFigure(picture, threshold), where picture is

a two-dimensional array of double values. The method should return a new twodimensional array whose elements are either 0.0 or 1.0. Each 1.0 in this new array indicates that the corresponding value in picture exceeds threshold times the average of all values in picture. Other elements in the new array are 0.0.

For example, if the values in picture are the average value is 5.55. The resulting array for a threshold of 1.4 would be and the resulting array for a threshold of 0.6 would be

	Solution:

See the code in TwoDArrayMethods.java.

21. Write a static method blur(double[][] picture) that you could use on a part of a picture file to obscure a detail such as a person’s face or a license plate number. This method computes the weighted averages of the values in picture and returns them in a new two-dimensional array. To find a weighted average of a group of numbers, you count some of them more than others. Thus, you multiply each item by its weight, add these products together, and divide the result by the sum of the weights.

For each element in picture, compute the weighted average of the element

and its immediate neighbors. Store the result in a new two-dimensional array in the same position that the element occupies in picture. This new array is the one the method returns. The neighbors of an element in picture can be above, below, to the left of,

and to the right of it, either vertically, horizontally, or diagonally. So each weighted average in the new array will be a combination of up to nine values from the array picture. A corner value will use only four values: itself and three neighbors. An edge value will use only six values: itself and five neighbors. But an interior value will use nine values: itself and eight neighbors. So you will need to treat the corners and edges separately from the other cells.

	Solution:

See the code in TwoDArrayMethods.java.

Projects:

1. Write a program that reads integers, one per line, and displays their sum. Also, display all the numbers read, each with an annotation giving its percentage contribution to the sum. Use a method that takes the entire array as one argument and returns the sum of the numbers in the array. Hint: Ask the user for the number of integers to be entered, create an array of that length, and then fill the array with the integers read. A possible dialogue between the program and the user follows:

How many numbers will you enter?

4

Enter 4 integers, one per line:

2

1

1

2

The sum is 6.

The numbers are:

2, which is 33.3333% of the sum.

1, which is 16.6666% of the sum.

1, which is 16.6666% of the sum.

2, which is 33.3333% of the sum.

	Notes:

This project is very much like ArrayOfTemperatures, Listing 7.1. Just add code to prompt for and read in the length of the array, and, instead of finding the average, divide each element by the sum to obtain its percent.

	References:

Listing 7.1

	Solution:

See the code in PercentOfSum.java.

2. Write a program that will read a line of text that ends with a period, which serves as a sentinel value. Display all the letters that occur in the text, one per line and in alphabetical order, along with the number of times each letter occurs in the text. Use an array of base type int of length 26, so that the element at index 0 contains the number of a’s, the element at index 1 contains the number of b’s, and so forth. Allow both uppercase and lowercase letters as input, but treat uppercase and lowercase versions of the same letter as being equal. Hints: Use one of the methods toUpperCase or toLowerCase in the wrapper class Character, described in Chapter 6. You will find it helpful to define a method that takes a character as an argument and returns an int value that is the correct index for that character. For example, the argument 'a' results in 0 as the return value, the argument 'b' gives 1 as the return value, and so on. Note that you can use a type cast, such as (int)letter, to change a char to an int. Of course, this will not get the number you want, but if you subtract (int)'a', you will then get the right index. Allow the user to repeat this task until the user says she or he is through.

	Notes:

This project is a bit challenging to get the loop conditions right. The objective is to keep the array index within bounds and count only letters. Another little problem is how to get the printable character code from the array index after the letter counts have been determined. The "trick" is to know that adding 65 decimal to the array index will produce the ASCII code for the character.

	Solution:

See the code in CountLettersInLine.java.

3. A palindrome is a word or phrase that reads the same forward and backward, ignoring blanks and considering uppercase and lowercase versions of the same letter to be equal. For example, the following are palindromes:

• warts n straw

• radar

• Able was I ere I saw Elba

• xyzczyx

Write a program that will accept a sequence of characters terminated by a period and will decide whether the string—without the period—is a palindrome. You may assume that the input contains only letters and blanks and is at most 80 characters long. Include a loop that allows the user to check additional strings until she or he requests that the program end. Hint: Define a static method called isPalindrome that begins as follows:

/**

Precondition: The array a contains letters and

blanks in positions a[0] through a[used − 1].

Returns true if the string is a palindrome and

false otherwise.

*/

public static boolean isPalindrome(char[] a, int used)

Your program should read the input characters into an array whose base type is char and then call the preceding method. The int variable used keeps track of how much of the array is used, as described in the section entitled “Partially Filled Arrays.”

	Notes:

The solution to this project reads in a line of text using the String class, then passes the string to the palindrome method which performs the test, returning true if the phrase is a palindrome, or false if not. A note in the source code's prologue calls attention to its behavior in the degenerate case where the phrase has no letters (either all blanks or a null String). Given the requirements in the problem statement that the palindrome method is passed the original line of text and returns a Boolean value, it cannot return an indication that the file was empty. As the note in the prologue states, it returns true in these situations. The palindrome method uses a character array to parse the array, getting rid of white spaces and saving only the letters (actually, it saves anything other than white space characters). Then it analyzes the letters to see if it a palindrome. The parsing technique can be borrowed from Project 2, so the interesting part of this problem is figuring out the algorithm to get the correct characters to compare. The algorithm is described in comments in the palindrome code. An easy way to make the palindrome test insensitive to case (it should ignore whether the characters are upper or lower case) is to make all the characters the same case, either upper or lower. The solution shown here uses the toUpperCase method in the Character wrapper class, but it would be equally correct to use toLowerCase.

	References:

Project 7.2

	Solution:

See the code in Palindrome.java.

4. Add a method bubbleSort to the class ArraySorter, as given in Listing 7.10, that performs a bubble sort of an array. The bubble sort algorithm examines all adjacent pairs of elements in the array from the beginning to the end and interchanges any two elements that are out of order. Each interchange makes the array more sorted than it was, until it is entirely sorted. The algorithm in pseudocode follows:

Bubble sort algorithm to sort an array a

Repeat the following until the array a is sorted:

for (index = 0; index < a.length − 1; index++)

if (a[index] > a[index + 1])

Interchange the values of a[index] and a[index + 1].

The bubble sort algorithm usually requires more time than other sorting methods.

	Notes:

This project requires an extension of the bubble sort algorithm outlined in the problem description because it gives pseudo-code for just one pass through the array, which puts only the highest remaining number in its correct slot. Additional passes (repetitions of the algorithm) are necessary until the array is completely sorted. Playing around with some simple examples can reveal how bubble sort works and the criteria for ending the loop and is a good exercise for students. Best case is when the array is already sorted (nothing needs to be swapped), worst case is when it is exactly backwards (everything needs to be swapped), and other orderings are somewhere in between. An efficient algorithm will detect when the loop is sorted and stop processing it. A flag can be used to detect the situation where the array is already sorted; set the flag to true before executing the swap loop and change it to false if a swap occurs - whenever the array is processed without doing a swap it is obviously sorted. At the other extreme, the worst case ordering shows that there is an upper limit to the number of iterations after which the array is guaranteed sorted. Notice that, for a loop with n elements, only n-1 comparisons of adjacent elements are required to move the largest element into its proper place. The next iteration should process the remaining n-1 elements (after the nth element which is correctly positioned), so it will process n-2 elements and result in the last two elements being properly placed, etc. Following this scenario leads to the conclusion that n-1 passes for an n-element array guarantees the array has been sorted, and each iteration needs to process one less element (the last element in the previous iteration). Combining these two criteria gives an efficient algorithm for sorting an array of n elements: repeat the swap loop until the swap flag stays true for the iteration, up to a maximum of n-1 times. Following the approach in the text, an additional class, BubbleSortDemo, is used to demonstrate the bubble sort method with a sample array.

	References:

Listing 7.10

	Solution:

See the code in BubbleSort.java and BubbleSortDemo.java.

5. Add a method insertionSort to the class ArraySorter, as given in Listing 7.10, that performs an insertion sort of an array. To simplify this project, our insertion sort algorithm will use an additional array. It copies elements from the original given array to this other array, inserting each element into its correct position in the second array. This will usually require moving a number of elements in the array receiving the new elements. The algorithm in pseudocode is as follows:

Insertion sort algorithm to sort an array a

for (index = 0; index < a.length; index++)

Insert the value of a[index] into its correct position in the array temp,

so that all the elements copied into the array temp so far are sorted.

Copy all the elements from temp back to a.

The array temp is partially filled and is a local variable in the method sort.

	Notes:

1. This project also requires an extension of the algorithm in the problem statement. In these descriptions the word "up" is used to mean a higher subscript in the array. (It could just as easily be called "down;" the important thing is to use the directions consistently in all descriptions.) The sorted array, temp, is created one element at a time, then, when all elements have been inserted correctly, temp needs to be copied back into the original array:

For each element in the original array:
{
 Get next value.
 Find its insertion point:
 {
 Compare next value to each element of temp, in order, starting at the lowest.
 The insertion point is found either when next value > element in temp,
 or the end of temp is reached.
 }
 Starting at the end of temp and working backward through the insertion point,
 move the elements in temp up one place. (You need to start at the top and
 work backward to avoid overwriting data in temp, and the value at the
 insertion point needs to be moved so next value can be inserted.)
 Insert next value into temp at the insertion point.
}

Copy temp array into original array: the original array is now sorted.

Following the approach in the text, an additional class, InsertionSortDemo, is used to demonstrate the bubble sort method with a sample array.

	References:

Listing 7.10

	Solution:

See the code in InsertionSort.java and InsertionSortDemo.java.

6. The class TimeBook in Listing 7.14 is not really finished. Complete the definition of this class in the way described in the text. In particular, be sure to add a default constructor, as well as set and get methods that change or retrieve each of the instance variables and each indexed variable of each array instance variable. Be sure you replace the stub setHours with a method that obtains values from the keyboard.

You should also define a private method having two int parameters that displays the first parameter in the number of spaces given by a second parameter. The extra spaces not filled by the first parameter are to be filled with blanks. This will let you write each array element in exactly four spaces, for example, and so will allow you to display a neat rectangular arrangement of array elements. Be sure that the main method in Listing 7.14 works correctly with these new methods. Also, write a separate test program to test all the new methods. Hint: To display an int value n in a fixed number of spaces, use Integer.toString(n) to convert the number to a string value, and then work with the string value. This method is discussed in Chapter 6 in the section “Wrapper Classes.”

	Notes:

The solution to this project is based on TimeBook.java, Listing 7.14. A good approach to this problem is to add one feature at a time to NewTimeBook, then add the code to test the feature in NewTimeBookDemo.java. The default constructor was written to have just one employee. The features were added in the order that the tests appear in NewTimeBookDemo.java, with the method to align the numbers in the table done last.

	References:

Listing 7.14

	Solution:

See the code in NewTimeBook.java and NewTimeBookDemo.java.

7. Define a class called TicTacToe. An object of type TicTacToe is a single game of tic-tac-toe. Store the game board as a single two-dimensional array of base type char that has three rows and three columns. Include methods to add a move, to display the board, to tell whose turn it is (X or O), to tell whether there is a winner, to say who the winner is, and to reinitialize the game to the beginning. Write a main method for the class that will allow two players to enter their moves in turn at the same keyboard.

	Notes:

This project is one of the most sophisticated problems in the text and is complex enough that a good, disciplined step-wise approach is particularly useful. The challenge is to break up the actions into manageable pieces and write methods for them. The goal is to create methods that are easy to use, logically written, and make main easy to write and read. It is helpful to write main as a sequence of method calls to do things (like clear the board for a new game, draw the board, enter an X or O on the board, check for a winner, etc.) without actually writing complete code for the methods. Instead, just write stubs with just a line that prints out its method name and, if it has a return type other than void, returns a fixed value. Then proceed to add functionality one method at a time. A good approach is to write the code to display the board first, then the code to clear it to start a new game, then the code to get an entry and insert it into the board, etc. The test for a winning move can be the last part implemented – it is easier work on that algorithm and code if everything is working.

	Solution:

See the code in TicTacToe.java.

8. Repeat Programming Project 12 from Chapter 5 but use an array to store the movie ratings instead of separate variables. All changes should be internal to the class so the main method to test the class should run identically with either the old Movie class or the new Movie class using arrays.
	Notes:

This project involves re-doing the Movie rating class with arrays instead of hard-coding five separate rating values. An even better version would be to re-do the Programing Project from 6.11, which is the same Movie class but adds constructors.

	References:

Programming Project 5.12 (optionally, Programming Project 6.11)

	Solution:

See the code in MovieArrays.java.

9. Traditional password entry schemes are susceptible to “shoulder surfing” in which an attacker watches an unsuspecting user enter their password or PIN number and uses it later to gain access to the account. One way to combat this problem is with a randomized challenge-response system. In these systems the user enters different information every time based on a secret in response to a randomly generated challenge. Consider the following scheme in which the password consists of a five-digit PIN number (00000 to 99999). Each digit is assigned a random number that is 1, 2, or 3. The user enters the random numbers that correspond to their PIN instead of their actual PIN numbers.
For example, consider an actual PIN number of 12345. To authenticate the user would be presented with a screen such as:

PIN:
0 1 2 3 4 5 6 7 8 9

NUM:
3 2 3 1 1 3 2 2 1 3

The user would enter 23113 instead of 12345. This doesn’t divulge the password even if an attacker intercepts the entry because 23113 could correspond to other PIN numbers, such as 69440 or 70439. The next time the user logs in, a different sequence of random numbers would be generated, such as:

PIN:
0 1 2 3 4 5 6 7 8 9

NUM:
1 1 2 3 1 2 2 3 3 3

Write a program to simulate the authentication process. Store an actual PIN number in your program. The program should use an array to assign random numbers to the digits from 0 to 9. Output the random digits to the screen, input the response from the user, and output whether or not the user’s response correctly matches the PIN number.
	Notes:

This solution inputs the PIN as a string and extracts the digits using the Unicode/ASCII representation, but a student could also input the number as an integer and extract the digits using division and modulus.
The actual PIN in the solution is 99508.

This project is somewhat difficult as it requires an understanding of arrays storing numbers that are used as an index in another array.

	Solution:

See the code in Authenticate.java.

10. Write an applet that displays a picture of a pine tree formed by drawing a triangle on top of a small rectangle that makes up the visible trunk. The tree should be green and have a gray trunk.

	Notes:

This project is a short applet program that draws a pine tree. It uses four arrays of int values. One array holds the x-coordinates of the branches, the second holds the y-coordinates of the branches, and the last two hold the x- and y-coordinates of the trunk.

	Solution:

See the code in PineTree.java and pineTree.html

11. ELIZA was a program written in 1966 that parodied a psychotherapist session. The user typed sentences and the program used those words to compose a question. Create a simple applet based on this idea. The applet will use a label to hold the program’s question, a text field into which the user can type an answer, a button for the user to signal that the answer is complete, and a quit button. The initial text for the question label should read: “What would you like to talk about?” When the user presses a button, get the text from the text field. Now extract the words from the text one at a time and find the largest word of length 4 or more. Let’s call this largest word X for now. In response, create a question based on the length of the word. If the word is length 4, the new question is: “Tell me more about X.” If the word is length 5, the new question is: “Why do you think X is important?” If the word is length 6 or more, the new question is: “Now we are getting somewhere. How does X affect you the most?” If there is no word of length 4, the new question is: “Maybe we should move on. Is there something else you would like to talk about?” Hint: You can use the class Scanner to extract the words from a string, assuming blanks separate the words. For example, the following statements

String text = “ one potato two potato “;

Scanner parser = new Scanner(text);

System.out.println(parser.next());

System.out.println(parser.next());

display one and potato on separate lines.

	Notes:

This project looks at a tiny piece of computing history and can be used to introduce questions of artificial intelligence. The actual implementation of our applet is pretty simple. Extending this applet to do a more complicated parsing of the input would be interesting. It would probably be a good idea as the action becomes more complicated move the parsing code out of actionPerformed into its own dedicated method or methods.

	Solution:

See the code in ElizaApplet.java.

12. Sudoku is a popular logic puzzle that uses a 9 by 9 array of squares that are organized into 3 by 3 subarrays. The puzzle solver must fill in the squares with the digits 1 to 9 such that no digit is repeated in any row, any column, or any of the nine 3 by 3 subgroups of squares. Initially, some squares are filled in already and cannot be changed. For example, the following might be a starting configuration for a sudoku puzzle:

Create a class SudokuPuzzle that has the attributes

• board—a 9 by 9 array of integers that represents the current state of the puzzle, where zero indicates a blank square

• start—a 9 by 9 array of boolean values that indicates which squares in board are given values that cannot be changed and the following methods:

• SudokuPuzzle—a constructor that creates an empty puzzle

• toString—returns a string representation of the puzzle that can be printed

• addInitial(row, col, value)—sets the given square to the given value as an initial value that cannot be changed by the puzzle solver

• addGuess(row, col, value)—sets the given square to the given value; the value can be changed later by another call to addGuess

• checkPuzzle—returns true if the values in the puzzle do not violate the restrictions

• getValueIn(row, col)—returns the value in the given square

• getAllowedValues(row, col)—returns a one-dimensional array of nine booleans, each of which corresponds to a digit and is true if the digit can be placed in the given square without violating the restrictions

• isFull—returns true if every square has a value

• reset—changes all of the nonpermanent squares back to blanks (zeros)

Write a main method in the class Sudoku that creates a SudokuPuzzle object

and sets its initial configuration. Then use a loop to allow someone to play sudoku. Display the current configuration and ask for a row, column, and value. Update the game board and display it again. If the configuration does not satisfy the restrictions, let the user know. Indicate when the puzzle has been solved correctly. In that case, both checkPuzzle and isFull would return true. You should also allow options for resetting the puzzle and displaying the values that can be placed in a given square.

	Notes:

This project creates a class that could be used to implement Sudoku. It uses three different patterns for accessing values in a two dimensional array. The hardest part of this class is getting the logic for check rows, columns and subsquares correct. It is strongly recommended that the checking logic be implemented in separate methods that are checked one at a time. A text based interface that allows you to play a game of Sudoku is implemented in the main method.

	Solution:

See the code in SudokuPuzzle.java.

13. Create an applet that draws the following picture of a magic wand, using polygons and polylines:

	Notes:

This project implements a simple applet that draws a picture of a magic wand. It is designed to demonstrate the use of drawPolygon with arrays. The solution also use drawPolyline to outline the figures in black. Creating and testing it iteratively is strongly recommended.

	Solution:

See the code in MagicWand.java.

_1131105097.unknown

_1131106429.unknown

