
1 © Kari Laitinen

• If you run the Java examples of Kari
with NetBeans, you may not use the
so-called package names before class
names when you create the projects.

• If you work with JCreator, it is not
necessary to create projects. You can
simply open the .java files to the
editor and compile and execute them.

Kari Laitinen
http://www.naturalprogramming.com
2005-06-07 File created.
2021-09-05 Last modification

These exercises are written for the students that I teach. The
exercises are also suitable for the readers of A Natural Introduction
to Computer Programming with Java.

Exercises related to Java programming

2 © Kari Laitinen

(Note that these are slightly different exercises than those provided in the book.)

Exercise 1:

Now the program presents an integer that is only minimally larger than the integer written by
the user of the program. Modify the program so that it outputs an integer that is twice as large
as the integer typed by the user. (Here you should also invent a better name for the variable
one_larger_integer. The character * is the multiplication operator in Java.)

Exercise 2:

Improve the program further so that it prints three integers to the user. The first number is the
twice-as-large integer that is calculated in the previous exercise. The other two integers are
numbers that follow the twice-as-large integer. For example, if the user types in the integer
144, your program must print numbers 288, 289, and 290. You should also modify the texts
printed by the program. If the user types in the integer value 17, the output of the program
should look like

 This program is a computer game. Please, type in
 an integer in the range 1 ... 2147483646 : 17

 You typed in 17.
 My numbers are 34, 35, and 36.
 Sorry, you lost the game.
 I have more and larger numbers.

EXERCISES WITH PROGRAM Game.java

3 © Kari Laitinen

Exercise 3:

Continue the program so that after the game is played, it lets the user play another game. In
the new game the program will again ask an integer from the user. In the second game the
program should lose the game so that it presents three integers that are much smaller than the
integer provided by the user. The first integer should be half of the integer of the user, the
second integer should be half of the first integer, and the third integer should be half of the
second integer. The last part of the program should produce the following output when the
user types in the value 144.

 Let's play another game. Please, type in
 an integer in the range 1 ... 2147483646 : 144

 You typed in 144.
 My numbers are 72, 36, and 18.
 You won the game!
 I have only small numbers.

Note that it will be quite easy to make this second game if you copy the statements of the first
game and paste the copied program lines to the end of the program. You must, of course,
modify the copied program lines so that they work as specified above.

The character / is the division operator which you will need to get a half of an integer.

4 © Kari Laitinen

There are different units to express lengths and heights in the world. For example, in the U.S.
it is common to use feet and inches to express human heights, whereas in continental Europe
meters and centimeters are in use. These units relate to each other so that 1 foot is 30.48
centimeters, 1 inch is 2.54 centimeters, and 1 foot is 12 inches.

Exercise 1:

Write a program with which you can convert a human height given in feet and inches to
centimeters. The program should ask the user to type in his or her height in two parts: first the
height in feet and then the inches part for the height. (A person can say that his or her height
is, for example, 5 feet and 9 inches. That would be 30.48 * 5 + 2.54 * 9 centimeters.

There can be thus two separate input statements in the program. After the program has
received the feet and the inches, it should calculate the corresponding value in centimeters
and print it to the screen.

To start making this program, you can take, for example, the Game.java program and rename
it to Height.java. Remember also to change the name of the class to Height.

You can input the values to int variables but the calculation results could be stored in
variables of type double. (See programs Miles.java and Distance.java.)

EXERCISES RELATED TO CALCULATIONS AND DECISIONS

5 © Kari Laitinen

Exercise 2:

Improve your program so that its user can give her or his height either in feet and inches or in
centimeters. Before any height values shall be given, the program should ask what kinds of
units the user wants to give. The program should have an if construct which decides what
kinds of calculations will be made. Your program could have the following structure.

 System.out.print(" This program makes calculations related to your height."
 + "\n Type 1 to give your height in feet and inches or"
 + "\n Type 2 to give your height in centimeters. ") ;

 int unit_selection = keyboard.nextInt() ;

 if (unit_selection == 1)
 {

 // Here you can make the calculations already done in the
 // previous exercise.

 }
 else if (unit_selection == 2)
 {
 // Here you can ask the height in centimeters and do the necessary
 // calculations
 }

Conversion from centimeters to feet and inches can be done with the division operator / and
with the remainder operator %. When calculating with the division operator / and int values,
computers always round numbers downwards. The following text clarifies these operators.

6 © Kari Laitinen

Exercise 3:

Improve the if construct of your program so that the program says "Wrong unit selection." if
the user types something else than 1 or 2 in the beginning.

Exercise 4:

If you have time, search the Internet and find out how to calculate an ideal weight for a
person who has a certain height. Make your program to print the user’s ideal weight.

The remainder operator %

The remainder operator %, which is sometimes called the modulus operator, is used with integers only. Division
operations with integers are sometimes inaccurate because computers do not round numbers upwards. For example,
the division operation 11/4, eleven divided by four, would be evaluated to 2 although 3 would be closer to the cor-
rect value. Computers do not obey human division rules. In division operations involving integers, computers
always round downwards. For this reason, the remainder operator % is sometimes useful. To understand operators /
and % properly, below are some correct calculations for you to study.

1 / 2 is 0 1 % 2 is 1
2 / 2 is 1 2 % 2 is 0
7 / 4 is 1 7 % 4 is 3
9 / 4 is 2 9 % 4 is 1
14 / 5 is 2 14 % 5 is 4
101 / 10 is 10 101 % 10 is 1

7 © Kari Laitinen

Exercise 1:

Write a program that prints a conversion table from miles to kilometers. The program should
produce the following output to the screen

 miles kilometers

 10.00 16.09
 20.00 32.19
 30.00 48.28
 40.00 64.37
 50.00 80.47
 60.00 96.56
 70.00 112.65
 80.00 128.74
 90.00 144.84
 100.00 160.93
 110.00 177.02

You can make this program by first making a copy of program Miles.java that we have
studied earlier. You should use a while loop or a for loop in your program. If you use a while
loop, the structure of the loop can look like the following. (In place of the four dots you
need to put your own statements or expressions. Remember that it is good to indent the
statements inside the braces { and }. Indentation means that you write the statements three
character positions to the right.)

EXERCISES RELATED TO LOOPS

8 © Kari Laitinen

 while (....)
 {

 distance_in_miles = distance_in_miles + 10 ;
 }

Exercise 2:

Improve the program so that it prints, after the table created in the previous exercise, a table
that contains conversions from kilometers to miles. The table could look like the following.

 kilometers miles

 10.00 6.21
 20.00 12.43
 30.00 18.64
 40.00 24.86
 50.00 31.07
 60.00 37.28
 70.00 43.50
 80.00 49.71
 90.00 55.92
 100.00 62.14
 110.00 68.35

After this exercise is completed, your program should print two conversion tables.

9 © Kari Laitinen

Exercise 3:

Improve your program so that the user can select what kind of conversion table must be
printed. In the beginning your program should print the following text.

 This program prints conversion tables.
 Type a letter to select a conversion table

 m miles to kilometers
 k kilometers to miles

After these lines are printed your program should read one character from the keyboard.
According to the character the program should print the correct conversion table.

In this exercise you should add an if-else if-else construct to your program, and you must
put the loops that were written in previous exercises inside the blocks of the if-else if-else
construct. You should study program Likejava.java to find out how to organize the new
version of your program.

Exercise 4:

Add a new selectable feature to your program. By pressing the letter P the user should be able
to get a conversion table that contains conversions from pounds to kilograms. Pound is a unit
of weight that is used in some countries. One pound is 0.4536 kilograms.

10 © Kari Laitinen

Exercise 5:

Improve the program so that it does not stop after it has printed a conversion table. Instead, it
should have the exit from the program a selectable feature. The whole program that is
constructed in the previous exercises should be put inside a while loop, and inside the while
loop the program should print the following menu

 This program prints conversion tables.
 Type a letter to select a conversion table

 m miles to kilometers
 k kilometers to miles
 p pounds to kilograms
 x exit the program

One possibility is to use a while loop that uses a boolean variable in the following way

 boolean user_wants_to_quit = false ;

 while (user_wants_to_quit == false)
 {

Inside the loop the boolean variable should be set to value true when the user types the letter
X.

11 © Kari Laitinen

Exercise 1:

Program Reverse.java stores integers in an array and prints the given integers in reverse
order. Make a copy of Reverse.java and modify it so that it takes exactly seven integers to
the array. Also, the program must ensure that the given integers are in the range from 1 to 39.

In this exercise you need to put an if construct inside the do-while loop of the program.

Make the program print the given integers in 'normal' order instead of the reverse order.

Exercise 2:

Modify the program so that it is not possible to enter an integer if the number has already
been typed in previously.

To do this, you need a loop that checks that the new given integer is not among those integers
that have already been given to the program.

You have to put the new loop inside the do-while loop that already exists in the program. You
could also use a boolean variable to store information in the case that a given number has
been entered previously. You should put the new loop before the if construct that you put

EXERCISES RELATED TO ARRAYS

12 © Kari Laitinen

there in the previous exercise.

A boolean variable can be given two values: true or false. The necessary boolean variable
and the loop could look like:

 boolean integer_previously_given = false ;

 // integer_index now tells how many integers have been given
 // before the current integer.

 for (int index_for_previous_numbers = 0 ;
 index_for_previous_numbers < integer_index ;
 index_for_previous_numbers ++)
 {
 if (given_integers[index_for_previous_numbers] ==
 integer_from_keyboard)
 {
 System.out.print("\n That integer has already been given.\n") ;

 // Here you have to modify the boolean variable.

 }
 }

In the above loop the used array is renamed to given_integers.

After the loop described above you should check in the if construct that the given integer is
in the range 1 ... 39 and that the integer has not been entered previously. You can include the
test of the value of the boolean variable into the boolean expression of the existing if
construct.

13 © Kari Laitinen

Exercise 3:

After you have made the exercises above, you have a program that inputs numbers that could
be used in Finnish national lottery game named Lotto.

Now you have to make the computer to generate its lottery numbers. In the folder
http://www.naturalprogramming.com/javabookprograms/javafilesextra/
you will find a program named RandomNumbersInArray.java. Copy suitable lines from
that program to your program so that your program will have automatically generated lottery
numbers.

After having done this, you have to improve your program so that it checks how many of the
numbers given from the keyboard belong to the generated lottery numbers. You can think that
the lottery numbers generated by the computer are the ’correct’ numbers, and by typing in
numbers from the keyboard you try to ’play’ the lottery game.

To make testing of your program easier, you should make the program print the generated
lottery numbers, so that you can enter some correct numbers from the keyboard.

Exercise 4:

Now the numbers used in the lottery game are in the range 1 ... 39. Try making this range
smaller (e.g. 1 ... 14) and see how good results you can get by playing against the computer.
In this exercise you should comment out some program lines so that it you cannot see the
numbers generated by the computer.

14 © Kari Laitinen

Strings in computer programming are data structures that store textual information. A string
usually contains a set of character codes which represent some particular text, such as a name
entered from the keyboard, or a line of text from a file. In Java, textual information is stored
inside String objects. For example, the text of this entire paragraph could be stored inside a
String object.

Program Fullname.java is an example in which String objects are created from the texts
that are input from the keyboard. Make a copy of that program and do the following
exercises.

Exercise 1:

Make the program print how many characters there are in the first name and in the last name.
By studying program StringReverse.java you can see how to get the length of a string.

After this modification a sample run of the program could look like

 Please, type in your first name: Kari

 Please, type in your last name: Laitinen

 Your full name is Kari Laitinen.

 Your first name has 4 characters.
 Your last name has 8 characters.

EXERCISES RELATED TO STRINGS

15 © Kari Laitinen

Exercise 2:

In addition to the previous printings, make the program print your full name in reverse
character order. Again, you can study StringReverse.java for help. The new output of the
program could look like

Your name in reverse order: nenitiaL iraK

It will be helpful if you add the following line to your program

String full_name = first_name + " " + last_name ;

Exercise 3:

Improve the program so that it prints your full name also as hexadecimal character codes. The
first character of your name could be printed as a hexadecimal code with the following
statement

System.out.printf(" %X", (int) full_name.charAt(0)) ;

in which the format specifier %X makes the printf() method print the int value in
hexadecimal form. char value is converted to int before printing.

Your task now is to create a loop that prints all characters of your name in hexadecimal
form.To ensure that your program works correctly, you can use the table at

http://www.naturalprogramming.com/for_reference/character_codes.pdf

16 © Kari Laitinen

Exercise 4:

Here your task is to improve the program so that it also prints the characters of your name in
random order. One possibility to do this is to use a loop to remove the characters of your
name randomly, and print them one by one until there are no characters left to print.

Because String objects cannot be modified or characters deleted from an existing object, you
could create a StringBuffer object of your full name and operate then with that object. It is
possible to remove or delete characters of a string that it contained inside a StringBuffer
object.

The following program lines convert the String object to a StringBuffer object and remove
a random character from the StringBuffer.

 StringBuffer full_name_buffer = new StringBuffer(full_name) ;

 int random_character_index =
 (int) (Math.random() * full_name_buffer.length()) ;

 char removed_character = full_name_buffer.charAt(random_character_index) ;

 full_name_buffer.deleteCharAt(random_character_index) ;

 System.out.print("\n " + removed_character + " was removed from "
 + full_name_buffer) ;

The method named length() returns a value that tells how many characters are left in a
StringBuffer. You could use the boolean expression (full_name_buffer.length() > 0)
to check when your while loop should terminate.

17 © Kari Laitinen

Exercise 5:

Improve the feature developed in the previous exercise so that the program produces five
variations of your name in random character order.

In this exercise you must put the loop created in the previous exercise inside a new loop. You
can re-create the StringBuffer object inside the new loop.

The program could produce the following output if the full name is "Kari Laitinen"

 Characters of your name in random order:
 ainKLarntii e
 iret inKnaaLi
 n iiieLtaKnra
 nit iLnKaerai
 a itnLKirniae

18 © Kari Laitinen

You can find a program named Pyramids.java in the folder
http://www.naturalprogramming.com/javabookprograms/javafilesextra/
This program demonstrates the use of a static method in a computer program. The program
has a method named print_pyramid() that is called from the main method. A numerical
value should be given as a parameter for the print_pyramid() method. The numerical value
specifies how many levels, or lines, the pyramid will have.

Make a copy of Pyramids.java to your own local folder, and do the following exercises.

You could first modify the last lines of the program to find out how you can adjust the size of
the pyramids. With the numerical value it is possible to specify the size, or height, of the
printed pyramid.

Exercise 1:

Write a new method to the program so that the beginning of the method looks like

static void print_pyramid_with_character(int desired_number_of_levels,
 char given_pyramid_character)
{
 ...
Here you can copy and paste the method print_pyramid() and modify its first lines.

EXERCISES RELATED TO STATIC METHODS WITH Pyramids.java

19 © Kari Laitinen

You should also modify the body of the last for loop in the new method so that the
given_pyramid_character will be printed twice in the following way

 System.out.print(given_pyramid_character) ;
 System.out.print(given_pyramid_character) ;

After these modifications it will be possible to call the method so that you can specify in the
method call the character with which the pyramid will be printed. For example, if you call the
method in the following way

print_pyramid_with_character(8, 'X') ;

the pyramid will be printed with letter 'X' in the following way

 XX
 XXXX
 XXXXXX
 XXXXXXXX
 XXXXXXXXXX
 XXXXXXXXXXXX
 XXXXXXXXXXXXXX
 XXXXXXXXXXXXXXXX

Test that the method works correctly after these modifications.

20 © Kari Laitinen

Exercise 2:

Write a new method to the program so that it will be possible to print an inverted pyramid. If
the new method is called

print_inverted_pyramid(10) ;

a upside-down pyramid like the following should appear on the screen.

 ====================
 ==================
 ================
 ==============
 ============
 ==========
 ========
 ======
 ====
 ==

Again, you can make the new method by first copying the original method print_pyramid()
and renaming it as print_inverted_pyramid(). In the new method, you should modify the
header of the outer for loop so that the pyramid levels will be printed in opposite order when
compared to the original method. You do not necessarily need to modify the body, i.e., the
internal statements, of the for loop.

21 © Kari Laitinen

Exercise 3:

Write again a new method to the program so that if the new method is called like

print_hollow_pyramid(16) ;

a hollow pyramid like the following will be printed

 ==
 ====
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 ================================

Also this new method can be made by first making a copy of the original method.

22 © Kari Laitinen

Exercise 4:

Improve the method that prints a hollow pyramid so that the walls of the pyramid are printed
with character pairs "/\", "//" and "\\", in the following way

 /\
 //\\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 //----------------------------\\

Note that when you want in your program to specify a string that contains two backslash
characters, you must write it "\\\\" because backslash is a so-called escape character with
which you can escape from the normal interpretation of characters. Then, two backslashes
means that your really want a backslash printed.

23 © Kari Laitinen

You can find a program named BigLetters.java in the folder
http://www.naturalprogramming.com/javabookprograms/javafilesextra/
This program demonstrates the use of a static method in a computer program. The program
has a method named print_big_letter() that is called from the main() method. A value of
type char must be given as a parameter for the print_big_letter() method. The method
then prints, if possible, the given character as a ’big letter’ to the screen.

Make a copy of BigLetters.java to your own folder, and do the following exercises.

Exercise 1:

Improve the program so that it can print also the characters ’D’ and ’E’ as big letters.

For each printable letter the program has a static array of strings that contains the strings that
can be used to write the particular letter as a ’big letter’.

While doing this exercise it is good to learn to use Copy and Paste operations with your
program editor.

Inside the print_big_letter() method, the letter data is printed with a ’foreach’ loop that
processes all elements of an array. ’Foreach’ loops are written with the keyword for but their
structure differs slightly from the ’traditional’ for loops. ’Foreach’ loops can only be used

EXERCISES RELATED TO (STATIC) METHODS WITH BigLetters.java

24 © Kari Laitinen

with arrays and other collections. Unfortunately the characters inside a String object cannot
be processed with ’foreach’ loops. All ’foreach’ loops can be replaced with traditional for
loops. For example, the ’foreach’ loop

 for (String letter_data_line : letter_A_data)
 {
 System.out.print("\n " + letter_data_line) ;
 }

could be rewritten as the following traditional for loop

 for (int line_index = 0 ;
 line_index < letter_A_data.length ;
 line_index ++)
 {
 System.out.print("\n " + letter_A_data[line_index]) ;
 }

As you can see, the ’foreach’ loop is shorter, and you do not have define an index variable for
it. In the above ’foreach’ loop letter_data_line refers in turn to each String object stored
in the array referenced by letter_A_data.

25 © Kari Laitinen

Exercise 2:

Currently the print_big_letter() method contains a long if ... else if ... else if
... construct. That program structure is slightly complicated as all program blocks inside the
long if ... else if ... else if ... contain a ’foreach’ loop. The structure of the
program can be simplified if we write it as follows.

 static String[] get_letter_data(char given_letter)
 {
 String[] letter_data ;

 switch (given_letter)
 {
 case 'A' : letter_data = letter_A_data ; break ;
 case 'B' : letter_data = letter_B_data ; break ;
 case 'C' : letter_data = letter_C_data ; break ;
 default: letter_data = unknown_letter_data ;
 }

 return letter_data ;
 }

 static void print_big_letter(char given_letter)
 {
 String[] letter_data = get_letter_data(given_letter) ;

 for (String letter_data_line : letter_data)
 {
 System.out.print("\n " + letter_data_line) ;
 }

 System.out.print("\n") ;
 }

26 © Kari Laitinen

The above two methods could replace the original print_big_letter() method of the
program. A new method named get_letter_data() is used to find and return the correct
letter data. Method get_letter_data() uses a program construct named switch-case
construct instead of the long if ... else if ... else if ... construct. switch-case
constructs can be used instead of complicated if ... else if ... else if ... constructs
in some cases. (By comparing programs Likejava.java and Likejavas.java, you can find
more information about switch-case constructs.)

In this exercise your task is to modify the program so that you replace the original
print_big_letter() method with the above two methods. You should also modify the
get_letter_data() method so that the modifications made in the previous exercise still
work.

It is very important that you try to understand how the above two methods work.

27 © Kari Laitinen

Exercise 3:

Write a new method named print_big_wide_letter() to the program. This new method
should work so that, while the original print_big_letter() prints the character ’A’ in the
following way

 XX
 XXXX
 XX XX
 XX XX
 XXXXXXXX
 XX XX
 XX XX

the new print_big_wide_letter() should print the letter ’A’ in the following way

 XXXX
 XXXXXXXX
 XXXX XXXX
 XXXX XXXX
 XXXXXXXXXXXXXXXX
 XXXX XXXX
 XXXX XXXX

The new method can use the same letter data as the original printing method. You can start
making the new method by first making a copy of print_big_letter(). In the new method
you must print each character of the letter data twice. As characters of a String cannot be
printed with a ’foreach’ loop, you must use a traditional for loop, or a while loop, to print
each character of a line twice.

The following statement prints a character of a String twice

28 © Kari Laitinen

 System.out.print("" + letter_data_line.charAt(character_index)
 + letter_data_line.charAt(character_index)) ;

To test the new method, you must call it from the main() method.

Exercise 4:

Improve the program by adding yet another new method. The new method could be named
print_big_word() and it could begin in the following way

 static void print_big_word(String given_word)
 {
 ...

If this new method is called from the main() method in the following way

 print_big_word("ABBA") ;

The following should appear on the computer screen

 XX XXXXXXX XXXXXXX XX
 XXXX XX XX XX XX XXXX
 XX XX XX XX XX XX XX XX
 XX XX XXXXXXX XXXXXXX XX XX
 XXXXXXXX XX XX XX XX XXXXXXXX
 XX XX XX XX XX XX XX XX
 XX XX XXXXXXX XXXXXXX XX XX

Also in this exercise you should use the same letter data that is used by the other methods.
Note that in the original letter data definitions there exist the necessary space characters at the
end of each String of the letter data.

29 © Kari Laitinen

There are two common systems for measuring temperature. Degrees of Fahrenheit (ºF) are
used in the U.S. and some other countries, while degrees of Celsius (ºC) are in use in most
European countries and in many countries throughout the world. The freezing point of water
is 0 degrees Celsius and 32 degrees Fahrenheit, 10ºC is 50ºF, 20ºC is 68ºF, 30ºC is 86ºF, and
so on. You can see that 10 degrees on the Celsius scale corresponds to 18 degrees on the
Fahrenheit scale.

Exercise 1:

Write a program that can convert degrees Fahrenheit to degrees Celsius, or vice versa.

Exercise 2:

Improve your program so that it converts the given numerical value to both Degrees Celsius
and to Degrees Fahrenheit. For example, if the user of the program types in 30, your program
should say how much 30 ºC is in Degrees Fahreinheit and how much 30 ºF is in Degrees
Celsius.

Exercise 3:

Improve your program so that if the user types in the value 0 (zero), the program prints a table
which looks like the following

Java Recap Exercises: A program to convert temperature values

30 © Kari Laitinen

 Celsius Fahrenheit

 -20.00 -4.00
 -15.00 5.00
 -10.00 14.00
 -5.00 23.00
 0.00 32.00
 5.00 41.00
 10.00 50.00
 15.00 59.00
 20.00 68.00
 25.00 77.00

You need an if construct to test whether the given value is zero. In addition you must print the
temperature table in in a loop. Program Largeint.java is an example where if constructs are
used. A while loop is demonstrated in program Whilesum.java. Programs Distance.java and
Formatting.java show how to format the output on the screen.

31 © Kari Laitinen

Exercise 4:

Improve your program so that the above temperature table is printed with a separate static
method. The method should look like

public static void print_temperature_table()
{
 ...
}

and it can be called from the main() method in the following way

if (given_temperature == 0)
{
 print_temperature_table() ;
}

Program Letters.java is an example that demonstrates how a parameterless method can be
called.

Exercise 5:

If you still have time, improve the program so that the temperature table is stored into a file.
Program Filecopy.java is an example in which text lines are written to a file. (If file handling
is not yet covered in your studies, this exercise might be too difficult.)

32 © Kari Laitinen

You can find a program named GuessAWord.java in the folder
http://www.naturalprogramming.com/javabookprograms/javafilesextra/
This program is a simple computer game in which the player has to try to guess the characters
of a word that is ’known’ by the game. Study the program and play the game in order to find
out how the game has been programmed.

Exercise 1:

Improve the Guess-A-Word game so that the word to be guessed is randomly taken from an
array of String objects. Such an array can be created with a statement such as

String[] words_to_be_guessed =
 { "VIENNA", "HELSINKI", "COPENHAGEN",
 "LONDON", "BERLIN", "AMSTERDAM" } ;

A random index for an array such as the one above can be created with the Math.random()
method in an expression like

(int) (Math.random() * words_to_be_guessed.length)

The Math.random() method returns a double value in the range 0.0 1.0 so that the value
1.0 is never returned. The above expression thus calculates a suitable random index. When
double values are converted to int values, they are always rounded ’downwards’ to the
smaller integer value.

EXERCISES WITH PROGRAM GuessAWord.java

33 © Kari Laitinen

Exercise 2:

Now the program is such that it terminates when the game is finished. Modify the program so
that the game can be played several times during a single run of the program. In the above-
mentioned folder there is a program named RepeatableGame.java which should be a helpful
example.

Exercise 3:

Improve the program so that it counts how many guesses the player makes during a game.
After a game is played, and before a new game starts, the program should print how many
guesses were made. The following variable could be useful in this task

int number_of_guesses = 0 ;

Exercise 4:

Improve the program so that it prints game statistics before the program terminates. This
means that the program shows which words were being guessed and how many guesses were
made for each word. The game statistics could look like the following.

 PLAYED WORD GUESSES

 COPENHAGEN 7
 LONDON 6
 COPENHAGEN 4
 BERLIN 5
 HELSINKI 4

34 © Kari Laitinen

As the ’played words’ will be randomly selected from an array, it is possible that the same
word is played several times.

You can use the following kind of data items to store data of games:

 int games_played = 0 ;
 String[] played_words = new String[50] ;
 int[] guesses_in_games = new int[50] ;

A variable of type int can be used to count how many games are played, and it can also be
used to index the arrays. New data should be put to the arrays after each game is played, and
the data should be displayed on the screen in the end when the user no longer wants to play
new games.

If you are familiar with classes and objects, you can alternatively use objects to store the
above mentioned gaming data.

35 © Kari Laitinen

Exercise 1:

Write a new method named make_stomach_empty() to class Animal in Animals.java. The
new method could be called

animal_object.make_stomach_empty() ;

and it should make stomach_contents reference an empty string "".

Exercise 2:

Add the new data field

String animal_name ;

to class Animal in program Animals.java. You have to modify the first constructor of the
class so that an Animal object can be created by writing

Animal named_cat = new Animal("cat", "Ludwig") ;

You also need to modify the copy constructor so that it copies the new data field. Method
make_speak() must be modified so that it prints something like

Hello, I am a cat called Ludwig.
I have eaten: ...

EXERCISES WITH PROGRAM Animals.java

36 © Kari Laitinen

Exercise 3:

Modify method make_speak() in program Animals.java so that it prints something like

Hello, I am ...
My stomach is empty.

in the case when stomach_contents references just an empty string. The stomach is empty as
long as method feed() has not been called for an Animal object. You can use the standard
string method length() to check if the stomach is empty. Method length() can be used, for
example, in the following way

if (stomach_contents.length() == 0)
{
 // stomach_contents references an empty string.
 ...

37 © Kari Laitinen

Exercise 4:

Write a default constructor for class Animal in program Animals.java. A default constructor
is such that it can be called without giving any parameters. The default constructor should
initialize the data fields so that the program lines

Animal some_animal = new Animal();
some_animal.make_speak() ;

would produce the following output on the screen

Hello, I am a default animal called no name.
...

38 © Kari Laitinen

Exercise 5:

Modify program Animals.java so that you add there a new class named Zoo. You can write
this new class after the Animal class. Objects of class Zoo should be objects that contain a set
of Animal objects. You do not necessarily need a constructor in class Zoo if you initialize the
data members when they are declared. The Zoo class should hava a method named
add_animal() with which a new Animal object can be added to the zoo. Moreover, the Zoo
class should contain a method named make_animals_speak(). Inside this method the
make_speak() method should be called for each Animal object. The Zoo class can look like
the following:

class Zoo
{
 Animal[] animals_in_zoo = new Animal[20] ;

 int number_of_animals_in_zoo = 0 ;

 public void add_animal(Animal new_animal_to_zoo)
 {
 ...

 public void make_animals_speak()
 {
 for (int animal_index = 0 ;
 animal_index < number_of_animals_in_zoo ;
 animal_index ++)

39 © Kari Laitinen

 {
 ...

This Zoo class contains an array of type Animal[] which stores references to Animal-objects.
The variable number_of_animals_in_zoo is used to count how many animals have been
added to the zoo. By studying program Olympics.java, you can find out how an array of
objects can be used.

You can test your new Zoo class by writing the following statements to method main():

 Zoo test_zoo = new Zoo() ;

 test_zoo.add_animal(cat_object) ;
 test_zoo.add_animal(dog_object) ;
 test_zoo.add_animal(another_cat) ;
 test_zoo.add_animal(some_animal) ;

 test_zoo.make_animals_speak() ;

40 © Kari Laitinen

Exercise 6:

In this exercise we will modify only the internal structure of class Animal. The functionality
of the methods of class Animal may not change although their internal statements will be
modified. This means that you do not need to modify the main() method.

Modify the data field stomach_contents in class Animal so that it becomes an array of type
String[]. You can write it as follows

String[] stomach_contents = new String[30] ;

This array can store 30 references to String objects. When an Animal object is being fed, the
given "string of food" should always be stored in the first free array position. To store the
strings into this array, you need to have a variable that counts how many times the animal in
question has been fed. For this purpose you can use a data field like

int number_of_feedings = 0 ;

which can also serve as an array index.

To use the above-defined array, you need to modify the internal statements of the methods in
class Animal. For instance, the feed() method must be modified so that the given food is
stored to the array. This can be accomplished with a statement like

stomach_contents[number_of_feedings] =
 food_for_this_animal ;

Method make_speak() can find out whether or not the the animal has been fed by checking
the value of number_of_feedings. Stomach contents can be printed with a loop that begins in

41 © Kari Laitinen

the following way

for (int food_index = 0 ;
 food_index < number_of_feedings ;
 food_index ++)
{
 System.out.print(...
 // print one "string of food" at a time

Exercise 7:

Derive from class Animal a new class named Carnivore. (A carnivore is an animal that eats
other animals.) The Carnivore class must contain a new version of method feed(). With this
new method it will be possible to feed other animals to a Carnivore object. The new feed()
method can begin in the following way:

 public void feed(Animal animal_to_be_eaten)
 {

An animal can be eaten so that the data field species_name is copied to the stomach of a
Carnivore object. Inside the new feed() method, the data field species_name of the given
Animal object can be referred to in the following way:

animal_to_be_eaten.species_name

42 © Kari Laitinen

The following statement would copy a reference to this data field

stomach_contents[number_of_feedings] =

 animal_to_be_eaten.species_name ;

You can build the new Carnivore class gradually so that you first write the class so that it only
has a constructor. After you have found out that the new class works so that you can construct
and use Carnivore objects, you can add the new feed() method.

You can write the new class after the Animal class into the existing .java file. (A single .java
file may contain several classes if the classes are not declared with the keyword public.)

Please, study the programs BankPolymorphic.java and Windows.java to find out how a class
can be derived from an existing class. In Java, a new class is derived with the keyword
extends in the following way:

class Carnivore extends Animal
{
 ...

Your Carnivore class could be tested with statements like:

Carnivore tiger = new Carnivore("...") ;
Animal cow = new Animal("...") ;

tiger.feed(cow) ;

43 © Kari Laitinen

When you write Java programs, you can use many standard Java classes in your programs.
One such class is named LocalDate. With this class you can do various calculations related to
dates and our calendar. Example programs which show how the LocalDate class can be used
include Apollo11.java, ImportantBirthdays.java, BadLuckDays.java,
Weddingdates.java and TitanicTimes.java.

Exercise 1:

Write a program that calculates your current age in years, months, and days. You can
accomplish this when you first create LocalDate objects in the following way

LocalDate my_birthday = LocalDate.of(1977, 07, 14) ;

LocalDate date_now = LocalDate.now() ;

By studying program TitanicTimes.java, you’ll find out how the time difference between
two LocalDate objects can be calculated. In program TitanicTimes.java a method named
until() is used to create a Period object that contains the time difference between two
LocalDate objects. Note that a Period object represents a different concept than a LocalDate
object.

You can do these exercises so that you start modifying program TitanicTimes.java. You
should, however, change the names in the program so that they reflect what you are

EXERCISES RELATED TO CLASS LocalDate

44 © Kari Laitinen

calculating. You can use the names given above.

Exercise 2:

Improve your program so that it prints a list of your most important birthdays and tells on
which day of week those birthdays occur. You should study program
ImportantBirthdays.java to find out how to do this. Actually, you can copy suitable lines
from ImportantBirthdays.java and change the names so that they match the names used in
the program developed in the previous exercise.

While doing these exercises, you should realize that our calendar is built into the methods of
class LocalDate. For example, there is a method named plusDays() with which it is possible
to add days to a date contained inside a LocalDate object. The plusDays() method returns a
new LocalDate object. While adding days to a date, the plusDays() method takes care of
varying month lengths, leap years, etc.

45 © Kari Laitinen

Exercise 3:

Improve your program so that it prints dates when you are 10000 and 20000 days old. The
age of a person is 10000 days, when his/her ’conventional’ age is approximately 27 years and
4 1/2 months. With this feature in your program, you’ll get new days for partying. This
feature can be programmed when you increment a day counter and an LocalDate object
inside a loop, for example, in the following way.

 // First we’ll make a copy of the origianal birthday object.

 LocalDate date_to_increment = LocalDate.of(my_birthday.getYear(),
 my_birthday.getMonth(),
 my_birthday.getDayOfMonth()) ;
 int day_counter = 0 ;

 while (day_counter < 20001)
 {
 // We’ll increment the LocalDate object with method plusDays()
 date_to_increment = date_to_increment.plusDays(1) ;
 day_counter ++ ;

 if ((day_counter % 10000) == 0)
 {
 // Continue the program in a suitable way.

Above, the LocalDate object that contains the birthday is first copied. It is important to do
this because the original ’birthday object’ is needed in later exercises.

46 © Kari Laitinen

Exercise 4:

Improve the feature that you programmed in the previous exercise so that the program tells
your exact age—in years, months, and days—on the days when you are 10000 or 20000 days
old. After you have done this exercise, your program should produce an output that looks like
the following:
 10000 days old on 2004-11-29 (Monday) 27 years, 4 months, and 15 days.
 20000 days old on 2032-04-16 (Friday) 54 years, 9 months, and 2 days.

Exercise 5:

Improve your program so that it tells when you are 1000000000 seconds old. Also this
feature can be programmed so that you count days starting from your birthday. Each day has
24 * 60 * 60 seconds. 1000000000 seconds will be reached some time after you are 31 years
old. Your program should print your age in years, months, and days on the day when you are
1000000000 seconds old. Again you’ll have one more day to celebrate!

You can do this exercise first so that you suppose that the day on which you were born is a
’full day’ of 24 * 60 * 60 seconds. Thus, you do not need know the exact hour of day when
you were born, or to count any seconds in this exercise. Later on, if you want, you can make
a more accurate calculation, in which you take into account the exact time of day when you
were born. In such a calculation it might be better to use the standard Java class
LocalDateTime.

47 © Kari Laitinen

Exercise 1:

Modify the program so that you replace the existing olympics_table with the alternative
olympics_table that is given in comments at the end of the program file. This can be done
with Copy and Paste operations. In this exercise you can still let the 'absurd' Olympics object
be at the end of the table.

Update also the olympics table so that the latest known Olympic games have Olympics
objects created.

Ensure that the program works correctly after these modifications.

Exercise 2:

Now the olympics table contains an 'absurd' Olympics object with the year 9999. This 'absurd'
Olympics object is used to mark the end of the data in the table.

After you have done the previous exercise, the length of the olympics table is such that the
last Olympics object is referenced from the last position in the table. There is thus no need to
have the 'absurd' object to mark the end of data. Instead, it is possible to use the length
property to check when the end of table has been reached.

EXERCISES WITH PROGRAM Olympics.java

48 © Kari Laitinen

In this exercise your task is to remove the 'absurd' Olympics object from the table, and modify
the if construct of the program so that it checks first if the end of table has been reached. The
if construct inside the while loop could begin in the following way:

 if (olympics_index >= olympics_table.length)
 {
 // The end of olympics data has been reached.

The operation of the program should not change in this exercise. The purpose is just to make
the structure of the program better.

Exercise 3:

Create a new class named WinterOlympics so that the new WinterOlympics class will be a
subclass of the original Olympics class. The definition of the WinterOlympics class should
begin

 class WinterOlympics extends Olympics
 {
 ...

You can write the new WinterOlympics class after the Olympics class in the program file.
With the keyword extends we can make WinterOlympics to inherit the Olympics class. We
can say also that class WinterOlympics is derived from the Olympics class.

Usually a superclass must have a default constructor because the contructor of superclass is

49 © Kari Laitinen

executed automatically before the constructor of the derived class. Therefore, you must add
the constructor

 public Olympics() {} // Empty default constructor

to class Olympics.

In this exercise you can make the WinterOlympics class such that it behaves in the same way
as its superclass Olympics. You just need a new constructor inside the the new class. You can
make it easily by copying the constructor of class Olympics and renaming it. The constructor
of a class has the same name as the class itself.

In this exercise the WinterOlympics class will be such that it contains only the constructor.

You can test your new class by adding the following object to the table

 new WinterOlympics(2006, "Torino", "Italia")

 If your program can find the data of Torino olympics, you have successfully carried out this
exercise.

Exercise 4:

Improve the new WinterOlympics class by writing a new version of method
print_olympics_data() into it. The new method should print a text that contains the word
'winter'. The output of the method could look like the following

50 © Kari Laitinen

 In 2006, Winter Olympics were held in Torino, Italy.

In this exercise you can copy the corresponding method from class Olympics, and modify the
text that is generated by the method.

When a subclass contains a method that has the same name and similar parameters as a
method in the superclass, we say that the method is overridden in the subclass. In this
exercise we override the method print_olympics_data() and the new version of the method
will be automatically be used for WinterOlympics objects.

Exercise 5:

Earlier the winter and summer olympics were orginized during the same year. For example,
in 1984 the winter olympics were in Sarajevo, Yogoslavia, and the summer olympics were in
Los Angeles, U.S.A.

If you add WinterOlympics objects that describe these earlier winter games to the olympics
table of the program, there will be problems. The search algorithm finds only the first
olympics that were held in the given year. If there are two objects for the same year, the latter
object will not be found.

Modify the program so that it will always process all objects referenced from the olympics
table, and print data of those objects that contain the given year.

51 © Kari Laitinen

After this modification there will be the problem that the program does not know whether or
not it could find a suitable olympics object in the table. To solve this problem you might use
the following variable

 boolean olympics_data_was_found = false ;

You can give this variable the value true after a suitable olympics object is found. If the
value of this variable is false in the end, it means that information for the given year was not
found in the table.

To test the new version of the program you should add more WinterOlympics objects to the
table.

Exercise 6:

Improve the program so that if the user types in 0 as the year, the program will print data of
all summer olympic games. Then, if the user types in 1, the data of all winter games will be
printed.

You can solve this problem by using the instanceof operator of Java. With the instanceof
operator you can check whether an object in the olympics table is of type WinterOlympics.
The boolean expression in the following if construct will be true if olympics_object refers
to an object that is of type WinterOlympics or of some subtype of WinterOlympics.

52 © Kari Laitinen

 if (olympics_object instanceof WinterOlympics)
 {
 ...
 }

Then, if you would like to know whether some olympics object is of type Olympics, you can
use an if construct such as

 if (! olympics_object instanceof WinterOlympics)
 {
 ...
 }

Note that you cannot use the instanceof operator to test whether an object is of type Olympics.
The reason for this is that instanceof returns true also when the object on its left side is an
object of some subclass of the class given on the right side of the operator.

53 © Kari Laitinen

A program named MonthCalendars.java can be found in the folder
http://www.naturalprogramming.com/javabookprograms/javafiles3new/
This program has a menu from which the user can select a few operations related to month
calendars. The program contains a class named EnglishCalendar, which is inherited by
another class called SpanishCalendar. Class EnglishCalendar contains, among other things,
a method named print() that prints the calendar of the month that is specified in data
members. The print() method, that may look quite complicated, is inherited by the lower
classes and does not need to be modified in these exercises.

Play first with the program and find out how it works.

Exercise 1:

At the beginning of the main() method two calendar objects are created. Modify the year and
month parameters used in these definitions to find out how calendar objects are created.

Exercise 2:

By typing letter ’n’ the user can now print the calendar of the next month. By typing ’p’ the
user can print the current calendar. Modify the program so that, instead of current calendar,
the selection ’p’ prints the calendar of the previous month.

To achieve this, you must add a new method named decrement_calendar_month() to class

EXERCISES WITH PROGRAM MonthCalendars.java

54 © Kari Laitinen

EnglishCalendar. This can be done quite easily by first making a copy of the
increment_calendar_month() method.

Exercise 3:

Define a new class named GermanCalendar into the program. You can make this new class a
subclass of EnglishCalendar. The new class can be similar to the SpanishCalendar class so
that it only needs a new constructor as the methods are inherited from its superclass
EnglishCalendar. In the new GermanCalendar class you can use the following definitions

 String[] german_names_of_months =

 { "Januar", "Februar", "Marz", "April",
 "Mai", "Juni", "Juli", "August",
 "September", "Oktober", "November", "Dezember" } ;

 String german_week_description =

 "Woche Mon Die Mit Don Fre Sam Son" ;

You should test your new class by defining a GermanCalendar object and calling the print()
method for it.

If you prefer, you can make, instead of a GermanCalendar class, some other calendar class in
this exercise. The important thing here is that the new class must be a subclass of
EnglishCalendar.

55 © Kari Laitinen

Exercise 4:

Improve the program so that there will be a new selectable item in the menu of the program.
When the user types ’g’ the program should switch to the use of German calendars.

Exercise 5:

Add a new menu item so that by typing ’y’ the user can see the calendar of the first month of
the next year (in relation to the calendar that is currently shown).

Exercise 6:

Modify the program so that when it starts executing it shows the English calendar of the
current month. This requires that you get the current year and month from the computer. This
can be achieved with the following program lines.

 LocalDate current_system_date = LocalDate.now() ;

 int current_year = current_system_date.getYear() ;
 int current_month = current_system_date.getMonthValue() ;

56 © Kari Laitinen

With the following exercises we will learn to use the standard Java class named ArrayList.
Objects of class ArrayList are dynamic arrays. Unlike conventional arrays, dynamic arrays
can ’grow’ when new objects are inserted to the array.

We will also study how a program can write text lines to a file. Java provides standard classes
with which files can be handled.

The goal of these exercises is that you will build a kind of text editor program, i.e., you can
produce a new text file by running your program.

Exercise 1:

To begin, write a program that inputs text lines from the keyboard and stores the text lines to
an ArrayList-based array. The needed ArrayList can be specified with the statement

ArrayList<String> given_text_lines =

 new ArrayList<String>() ;

This statement creates an ArrayList array that can be used to store String objects, i.e., the
text lines that will be given from the keyboard. You need the following import statement in
your program

import java.util.* ; // ArrayList, Scanner, etc.

EXERCISES RELATED TO CLASS ArrayList AND FILES

57 © Kari Laitinen

Your program should work so that it reads text lines from the keyboard until the user gives a
line that contains a full stop ’.’ as the first character of the text line. This kind of line is a sign
for the program that it should stop reading more text lines. The following could be the
structure of your loop.
 boolean user_wants_to_type_more = true ;

 while (user_wants_to_type_more == true)
 {
 String text_line_from_user = keyboard.nextLine() ;

 if (text_line_from_user.length() > 0 &&
 text_line_from_user.charAt(0) == '.')
 {
 user_wants_to_type_more = false ;
 }
 else
 {
 // Here you should add the string to the
 // ArrayList array.
 }
 }

Class ArrayList has a method named add() with which you can add a new element to the
end of the array.

58 © Kari Laitinen

To ensure that your input loop works, you can add the following loop to your program, after
the input loop:

 System.out.print("\nGIVEN LINES: \n") ;

 for (String text_line : given_text_lines)
 {
 System.out.print("\n" + text_line) ;
 }

The above loop is a ’foreach’ loop that prints all the text lines in the ArrayList array. When
you have this loop in your program, it should output all the text lines that were input in the
first loop.

Exercise 2:

After having completed the previous exercise, you can be sure that you have the given text
lines in an ArrayList array. Now your task is to store the text lines to a file. By studying the
program Findreplace.java of the book, you will find out how the text lines of an ArrayList
array can be stored to a file. In fact, Findreplace.java contains a ready-to-use method for this
purpose. You can copy this method to your program, and call it to store the text lines of your
ArrayList array. You can store the text lines to a file named test.txt. You need to have the
following import statement in your program

import java.io.* ; // Classes for file handling.

59 © Kari Laitinen

To ensure that your text lines have indeed been stored to a file, you can use a text editor, or
you can use the following command in a command prompt window

type test.txt

Exercise 3:

Improve your program so that after it has input the actual text lines, it will ask a file name to
which the text will be stored, i.e., the text lines will no longer be automatically stored to a file
named test.txt.

Exercise 4:

Improve your program so that it will ensure the following things related to the given file
name:

• If a file with the given name already exists, the program will ask a new file name.

• The program will not accept an empty string as a file name.

• The program accepts only file names that end with ".txt".

To test all these things you need a loop that begins in the following way (The first two tests
are already written there.).

60 © Kari Laitinen

 String given_file_name = "notknown.txt" ;

 boolean acceptable_file_name_given = false ;

 while (acceptable_file_name_given == false)
 {
 System.out.print(
 "\nGIVE FILE NAME TO STORE THIS TEXT: ") ;

 given_file_name = keyboard.nextLine() ;

 if (new File(given_file_name).exists())
 {
 System.out.print("\nThis file already exists!") ;
 }
 else if (given_file_name.length() == 0)
 {

61 © Kari Laitinen

Exercise 5:

To complete your program, make it such that it automatically prints the contents of the new
created text file. You should write a method that can be called to print the contents of a text
file. The method could be called in the following way at the end of your program:

 System.out.print("\nTHE FOLLOWING IS YOUR NEW FILE:\n");
 print_text_file(given_file_name) ;

By studying the example program Fileprint.java, you will find out how to write the needed
method.

62 © Kari Laitinen

EXERCISES RELATED TO GUI PROGRAMMING

 The rest of the exercises in this document are related to
GUI (Graphical User Interface) programming. That topic
is not covered in A Natural Introduction to Computer
Programming with Java.

63 © Kari Laitinen

StepsFX.java is a program that shows graphical steps that are constructed in two ways.
Steps have been made by using objects of types Rectangle and Line. In these exercises you
should make the program ’better’, and learn how Java FX applications are built.

Exercise 1:

Currently the program shows ascending and descending steps if you look at it from left to
right. Modify the program so that it shows descending and ascending steps in the following
way.

EXERCISES WITH PROGRAM StepsFX.java

64 © Kari Laitinen

Exercise 2:

Modify the program further so that you use different colors in the descending steps. You can
do this, for example, so that you use the following array, and index it in the loop where you
create the Rectangle objects.
 Color[] step_colors = { Color.DARKKHAKI, Color.AQUAMARINE, Color.LIGHTBLUE,
 Color.KHAKI, Color.ORANGE, Color.ROSYBROWN,
 Color.THISTLE, Color.TOMATO } ;

The steps could look like the following after this exercise is done.

65 © Kari Laitinen

Exercise 3:

Improve the program further so that you create a ’substructure’ below the ascending steps.
You should use randomly colored balls, i.e., Circle objects, as shown in the following
picture.

You can create the balls with a single for loop that you put inside the loop that creates the
ascending steps. A random color can be created with a statement like

 Color random_color = Color.color(Math.random(), Math.random(),
 Math.random()) ;

66 © Kari Laitinen

Exercise 4:

As a final improvement, modify the descending steps so that they form a pyramid, as shown
in the following picture.

In order to make space for the pyramid, you could increase the width of the window with
something like 280 points.

After you have done these exercises, you can say that you have learned to build a pyramid, if
somebody asks about your recent study activities.

